1
|
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023; 28:molecules28031413. [PMID: 36771079 PMCID: PMC9921933 DOI: 10.3390/molecules28031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.
Collapse
Affiliation(s)
- Artem P. Dysin
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anastasia A. Godzishevskaya
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (A.G.T.); (A.S.K.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
- Correspondence: (A.G.T.); (A.S.K.)
| |
Collapse
|
2
|
The Quality and Flavor Changes of Different Soymilk and Milk Mixtures Fermented Products during Storage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study explored the effects of two mixed fermentation methods: one was fermenting a soymilk and milk mixture by a lactic acid bacteria fermenting agent at 0.1 g/kg and 42 °C until the acidity was 70 °T, which was set as the MFSM method, and the other was fermenting milk alone by lactic acid bacteria at 42 °C for 12 h, placing it in a 4 °C refrigerator after acidification for 24 h and then mixing it with soymilk at a 1.5:1 ratio and storing the mixture at 4 °C, which was set as the SMFSM method. The quality and flavor of the soymilk and milk mixture products were investigated on the 0th, 15th and 30th days during storage. The changes in acidity, pH, number of viable bacteria, viscosity, water-holding capacity, texture, rheological properties, sensory quality and volatile flavors were determined. The results showed that compared with the fermented soymilk and milk mixtures under the MFSM method, the samples of fermented soymilk and milk mixtures under the SMFSM method showed a significant slowdown of acidification during storage, so that the sensory quality of the products was almost unaffected by acidity on the 30th day of storage. Furthermore, the number of viable bacteria was greater than 7 log cfu/mL. The water holding capacity did not change significantly until the 30th day. There was also no whey precipitation, indicating good stability. The samples in SMFSM mode had higher aromatic contents and beans during storage than the fermented soymilk and milk mixtures in MFSM mode. The rich variety of volatile flavors and the presence of acetoin, 2-heptanone, and (E,E)-3,5-octadien-2-one throughout the storage period allowed the samples to maintain a good sensory flavor during storage.
Collapse
|
3
|
Inulin addition improved probiotic survival in soy-based fermented beverage. World J Microbiol Biotechnol 2022; 38:133. [PMID: 35689148 DOI: 10.1007/s11274-022-03322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Currently, the growing demand for non-dairy functional foods leads to the constant development of new products. The objective of the present work was to obtain a soy-based fermented beverage employing the strains Lactiplantibacillus plantarum CIDCA 8327 or Lacticaseibacillus paracasei BGP1 and to analyze the effect of post-fermentation addition of inulin of low or high average polymerization degree on the bacterial resistance. Also, the antimicrobial and antioxidant activity of the fermented soy-based beverages were analyzed. The soy-based matrix was shown to be a suitable substrate for the growth of both lactic acid bacteria, and the fermented beverages obtained presented bioactive properties such us antioxidant activity and bactericidal effect against pathogen microorganisms. The addition of inulin after the fermentation process avoid the hydrolysis and so, preserve its polymerization degree and thus the potential prebiotic effect. The incorporation of inulin to the soy-based fermented beverages increased the bacterial count after 30 days of refrigerated storage up to 8.71 ± 0.15 and 8.41 ± 0.10 log CFU/mL for L. paracasei and L. planatrum respectively. The resistance to the gastrointestinal conditions of the strain L. paracasei BGP1 in the fermented beverage was improved up to 70% when inulin of high polymerization degree was added. Meanwhile the strain L. plantarum CIDCA 8327 showed a survival of 97 and 94% in the fermented beverage added with inulin of low or high polymerization degree, respectively. These results contribute to the development of non-dairy products containing inulin and probiotics and the diversification agri-based functional foods.
Collapse
|
4
|
NASCIMENTO MG, SOUZA HMD, DELANI TCDO, CROZATTI TTDS, MARCOLINO VA, RUIZ SP, SAMPAIO AR, MIYOSHI JH, MATIOLI G. Fermented beverage obtained from soy and rice incorporated with inulin and oligosaccharides derived from succinoglycan. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Graciette MATIOLI
- Universidade Estadual de Maringá, Brasil; Universidade Estadual de Maringá, Brasil
| |
Collapse
|
5
|
Lillo-Pérez S, Guerra-Valle M, Orellana-Palma P, Petzold G. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Kumari M, Kokkiligadda A, Dasriya V, Naithani H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J Appl Microbiol 2021; 133:104-119. [PMID: 34724304 DOI: 10.1111/jam.15342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anusha Kokkiligadda
- Department of Dairy Microbiology, College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupti, Andhra Pradesh, India
| | - Vaishali Dasriya
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
7
|
Rasika DMD, Vidanarachchi JK, Rocha RS, Balthazar CF, Cruz AG, Sant’Ana AS, Ranadheera CS. Plant-based milk substitutes as emerging probiotic carriers. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kamel DG, Hammam AR, Alsaleem KA, Osman DM. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria ( Bifidobacterium bifidum) and sensory characteristics. Food Sci Nutr 2021; 9:1743-1749. [PMID: 33747485 PMCID: PMC7958560 DOI: 10.1002/fsn3.2154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this work was to study the effect of different concentrations of inulin (0.2, 0.4, and 0.6%) on the viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics of probiotic yogurt. The yogurt was manufactured with Lactobacillus delbruckii ssp. bulgaricus (Lb), Streptococcus thermophilus (St), and Bifidobacterium bifidum (Bb). Raw milk was received, heated to 90°C, and divided into 4 aliquots portions. All portions were inoculated with 5.11 log cfu of Lb and St combined and 5 log cfu of Bb per kg of milk. The first portion was utilized as control (T1) while 0.2, 0.4, and 0.6% of inulin were added to the second (T2), third (T3), and fourth (T4) portions, respectively. All treatments were incubated at 40°C until a pH of 4.6 was reached. Subsequently, the yogurt was cooled and stored at 4°C for 16 days. Titratable acidity, total bacterial count (TBC), Bb count, yeast count, mold count, and sensory evaluation were determined during the storage. The results showed that the addition of inulin and the storage period have significant effects (p < .05) on the titratable acidity of the yogurt. The storage of control was ended after 8 days at 4°C due to the growth of molds on the surface of the samples. The TBC decreased (p < .05) over time in control from 8.28 to 7.97 log cfu/g. It was also decreased (p < .05) with increasing the concentration of inulin. However, the addition of inulin increased (p < .05) the viability of Bb during the storage, as well as, acted as an antimicrobial against molds in T2, T3, and T4. Additionally, there were no significant differences (p > .05) in the sensory evaluation of all treatments. We conclude that inulin can be utilized in the manufacturing of probiotic yogurt as a prebiotic, which, inturn, enhances the growth of Bb and increase the shelf-life.
Collapse
Affiliation(s)
- Dalia G. Kamel
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Ahmed R.A. Hammam
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
| | - Khalid A. Alsaleem
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Department of Food Science and Human NutritionCollege of Agriculture and Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Dina M. Osman
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| |
Collapse
|
9
|
Tasdemir SS, Sanlier N. An insight into the anticancer effects of fermented foods: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Mesquita MC, Leandro EDS, de Alencar ER, Botelho RBA. Fermentation of chickpea (Cicer arietinum L.) and coconut (Coccus nucifera L.) beverages by Lactobacillus paracasei subsp paracasei LBC 81: The influence of sugar content on growth and stability during storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Microbial and Sensory Analysis of Soy and Cow Milk-Based Yogurt as a Probiotic Matrix for Lactobacillus rhamnosus GR-1. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plant-based milk alternatives represent a growing sector of the functional food industry due to consumer demand for more nutritious and sustainable options. Soymilk is abundant in fibre, phytosterols, and isoflavones. In contrast, cow milk has a high cholesterol and caloric content, superior organoleptic characteristics, and a well-established probiotic delivery matrix. Supplementing cow milk with soymilk to produce probiotic yogurt may enhance the nutritional value, sensory profile, and probiotic delivery capacity of the final product. In order to investigate the probiotic potential and sensory appeal of this blend, four yogurt mixtures were prepared by incorporating 0% (T1), 25% (T2), 50% (T3), or 75% (T4) soymilk in cow milk. The viability of Lactobacillus rhamnosus GR-1 and pH were evaluated during fermentation (6 h) and refrigerated storage (30 days). Additionally, consumer acceptability was determined through a sensory evaluation. L. rhamnosus GR-1 reached viable counts of 108 colony forming units (CFU)/mL in all treatments. Sensory panellists provided higher hedonic scores to T1 for appearance and texture compared to T2–T4, but flavour and overall acceptability ratings amongst T1–T4 were comparable. These results serve as an indication for the successful fortification of cow and soymilk yogurt mixtures with L. rhamnosus GR-1.
Collapse
|
12
|
The effects of inulin combined with galacto-oligosaccharide on the various properties of synbiotic soy cheese containing Lactobacillus acidophilus KLDS 1.0738. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas2019.740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Kehinde BA, Panghal A, Garg MK, Sharma P, Chhikara N. Vegetable milk as probiotic and prebiotic foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:115-160. [PMID: 32892832 DOI: 10.1016/bs.afnr.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vegetable milks are fast gaining attention on the global scale as the possible alternatives due to concerns associated with milk consumption. In particular, issues varying from allergenic constituents and lactose intolerance to social and religious beliefs among consumers have induced an increase in the market demand for vegetable milks. Their concomitant nutritional and bioactive components appraise them of the suitable profile for the food-based carriage and delivery of probiotics. More so, the presence of prebiotics in their natural configuration makes them serviceable for the assurance of the needed probiotic viability, subsequent to their exposure to digestive conditions. On another note, their availability, ease of processing, and cost-effectiveness have been established as other possible rationales behind their adoption. This chapter comprehensively delineates the probiotic and prebiotic food-usage of vegetable milks. Captions related with consumer concerns, processing operations, nutritional and prebiotic constitutions, metabolic interactions during probiotic fermentation, and associated health benefits of vegetable milks are discoursed.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Anil Panghal
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - M K Garg
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Navnidhi Chhikara
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| |
Collapse
|