1
|
Yadav S, Mishra S. Optimization of spray-drying process for the microencapsulation of L. Plantarum (MCC 2974) in ultrasound hydrated finger millet milk. Food Sci Biotechnol 2024; 33:2777-2788. [PMID: 39184992 PMCID: PMC11339190 DOI: 10.1007/s10068-024-01532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 08/27/2024] Open
Abstract
Spray drying process was optimized for the development of probiotic finger millet milk powder. The independent parameters considered were inlet air temperature, maltodextrin content, and feed rate depending upon the preliminary trials. The major dependent quality parameters considered in the current work were moisture content, water activity, powder yield, encapsulation efficiency, and viability reduction. The desirability function was considered as a basis for the optimization of spray drying process. At the optimum process conditions of 151.68 °C of inlet air temperature, 100 mL/h of feed rate, and 29.32% of maltodextrin content, probiotic finger millet milk powder with 43.81% of powder yield and 84.97% of higher encapsulation efficiency could be achieved. The SEM analysis of the spray-dried powder confirmed the proper encapsulation of viable cells in the powder matrix. XRD analysis showed the amorphous powder structure suitable for other food applications. The promising results could be further utilized to produce non-dairy probiotic finger millet milk powder.
Collapse
Affiliation(s)
- Shweta Yadav
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonipat, Haryana 131028 India
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabyasachi Mishra
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
2
|
Mundassery A, Ramaswamy J, Natarajan T, Haridas S, Nedungadi P. Modern and conventional processing technologies and their impact on the quality of different millets. Food Sci Biotechnol 2024; 33:2441-2460. [PMID: 39144204 PMCID: PMC11319574 DOI: 10.1007/s10068-024-01579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 08/16/2024] Open
Abstract
Millet, the highly sustainable crop for farming and combating hunger, has recently regained a resurgence in popularity as people seek more sustainable and nutrient-dense alternatives. International organizations and research institutions have advocated for increased millet production and consumption by introducing novel technologies and machinery in response to global food security and climate change challenges. This review aims to identify the impact of modern and conventional processing technologies on the quality of different millets. A comprehensive analysis of research reviews reveals that double-stage and tabletop centrifugal dehullers, infrared roasting, pulsed light, ultrasound, high-pressure processing methods, fortification, and encapsulation are optimal for nutrient retention in various millets. Extrusion technology application in millet processing has created a diverse range of value-added products with extended shelf stability. Emphasis is needed to develop robust promotion and distribution channels and establish an export promotion forum involving all stakeholders to promote and diversify millet-based products and technologies.
Collapse
Affiliation(s)
- Athira Mundassery
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Jancirani Ramaswamy
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Tharanidevi Natarajan
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Soorya Haridas
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Prema Nedungadi
- Amrita Create, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525 India
| |
Collapse
|
3
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
4
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
5
|
Afzaal M, Saeed F, Ateeq H, Akhtar M, Imran A, Ahmed A, Aamir M, Islam F, Yasmin I, Shah YA, Hussain M, Hameed A, Kumar R, Awuchi CG. Probiotics encapsulated gastroprotective cross-linked microgels: Enhanced viability under stressed conditions with dried apple carrier. Food Sci Nutr 2023; 11:817-827. [PMID: 36789050 PMCID: PMC9922151 DOI: 10.1002/fsn3.3116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
In the current study, Lactobacillus acidophilus was encapsulated in sodium alginate and whey protein isolate, with the addition of antacids CaCO3 or Mg(OH)2. The obtained microgels were observed by scanning electron microscopy. Encapsulated and free probiotics were subjected to vitality assay under stressed conditions. Furthermore, dried apple snack was evaluated as a carrier for probiotics for 28 days. A significant (p ≤ .05) effect of antacid with an encapsulating agent was observed under different stressed conditions. During exposure to simulated gastrointestinal conditions, there were observations of 1.24 log CFU and 2.17 log CFU, with corresponding 0.93 log CFU and 2.63 log CFU decrease in the case of SA + CaCO3 and WPI + CaCO3 respectively. Likewise, high viability was observed under thermal and refrigerated conditions for probiotics encapsulated with SA + CaCO3. In conclusion, the results indicated that alginate microgels with CaCO3 are effective in prolonging the viability of probiotics under stressed conditions.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Aamir
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Iqra Yasmin
- Barani Agricultural Research InstituteChakwalPakistan
| | - Yasir Abbas Shah
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Adnan Hameed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Roshan Kumar
- Department of PharmacologyDev Bhoomi Institute of Pharmacy and ResearchDehradunIndia
| | | |
Collapse
|
6
|
Chaturvedi S, Chakraborty S. Comparative analysis of spray-drying microencapsulation of Lacticaseibacillus casei in synbiotic legume-based beverages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Adinepour F, Pouramin S, Rashidinejad A, Jafari SM. Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Res Int 2022; 157:111212. [DOI: 10.1016/j.foodres.2022.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
|