1
|
Lin Q, Liang W, Yan M, Zhao W, Niu L, Shen H, Li W. Improvement of sorghum-wheat blended flours by E-beam irradiation: Physicochemical properties, rheological behavior, microstructure, and quality properties. Int J Biol Macromol 2024; 265:130967. [PMID: 38499122 DOI: 10.1016/j.ijbiomac.2024.130967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
To enhance the processing suitability of blended flours, this study used 4 kGy E-beam irradiated (EBI) sorghum flour in different ratios blended with wheat flour and further verified the improvement mechanism of the processed products under the optimal ratios. The results suggested that the EBI can mitigate the deterioration of the blend flour farinograph properties while enhancing the gas release during dough fermentation. Under the same addition ratio, the irradiated blend flours showed higher expansion height, gas release, cavitation time, and gas retention coefficient than the control flours. Also, irradiated blend flours retained a gluten network at a higher addition rate (20 %). Moreover, the irradiated blend flours were optimized at 10 % as its pasting and thermal properties were improved. Notably, this ameliorating effect promotes a decrease in hardness and chewiness and an increase in cohesion of the bread cores, presenting better textural attributes and delaying the aging rate during storage. The findings are instructive for applying EBI technology in the manufacture and quality improvement of mixed grain breads and open a new research avenue for processing sorghum staple foods.
Collapse
Affiliation(s)
- Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengting Yan
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Niu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
do Nascimento GKS, Silva MS, Andressa I, Fagundes MB, Vendruscolo RG, Oliveira JR, Barcia MT, Benassi VM, Neves NDA, Lima CT, Schmiele M. A New Advancement in Germination Biotechnology of Purple Creole Corn: Bioactive Compounds and In Situ Enzyme Activity for Water-Soluble Extract and Pan Bread. Metabolites 2024; 14:35. [PMID: 38248838 PMCID: PMC10819606 DOI: 10.3390/metabo14010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Germination is a simple and cost-effective technology that enhances the technological, sensory, and nutritional potential of grains, making them more attractive for use in the food industry. Germinating indigenous seeds is an alternative to increase noticeability and add value to these grains, which hold social and economic significance in the regions where they are cultivated, such as creole purple pericarp corn (PPCC) from the Couto Magalhães de Minas region in Brazil. This study aimed to optimize the germination parameters of time (24-96 h) and temperature (18-32 °C) for PPCC to produce water-soluble extracts and bread. Endogenous enzymes resulting from the germination process significantly enhanced (p < 0.10) the technological (total reducing sugars, total soluble solids, and soluble proteins) and biological properties (γ-aminobutyric acid, total soluble phenolic compounds, and antioxidant capacity) of the water-soluble extracts. The optimum point for obtaining the extracts was found to be at 85.3 h at 30.46 °C (with desirability of 90.42%), and this was statistically validated. The incorporation of germinated PPCC flours into bread was also promising (p < 0.10) and had a positive impact on the dough property (dough volume increase) and the final product, especially in terms of instrumental texture (springiness, cohesiveness, gumminess, chewiness, and resilience), resulting in a softer texture (lower firmness and hardness). The addition of PPCC flours did not alter instrumental color parameters, which may lead to greater consumer acceptance due to imperceptible differences in color to untrained individuals, with the optimized point at 96 h at 29.34 °C, with a desirability of 92.60%. Therefore, germinated PPCC shows promise for use as a base for obtaining water-soluble extracts and in bread as a replacement for commercial flour improvers, while also adding value to a raw material that is part of the local culture and agrobiodiversity.
Collapse
Affiliation(s)
- Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Michelle Santos Silva
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Irene Andressa
- Department of Food Science and Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Mariane Bittencourt Fagundes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Raquel Guidetti Vendruscolo
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Josimar Rodrigues Oliveira
- Institute of Agrarian Science, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil;
| | - Milene Teixeira Barcia
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Nathália de Andrade Neves
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Cristiane Teles Lima
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, MG, Brazil; (G.K.S.d.N.); (M.S.S.); (V.M.B.); (N.d.A.N.); (C.T.L.); (M.S.)
| |
Collapse
|
3
|
Borgonovi SM, Chiarello E, Pasini F, Picone G, Marzocchi S, Capozzi F, Bordoni A, Barbiroli A, Marti A, Iametti S, Di Nunzio M. Effect of Sprouting on Biomolecular and Antioxidant Features of Common Buckwheat ( Fagopyrum esculentum). Foods 2023; 12:foods12102047. [PMID: 37238865 DOI: 10.3390/foods12102047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Federica Pasini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Silvia Marzocchi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|