1
|
Cui Y, Yang Z, Lv Z, Lei J. Disruption of extracellular redox balance drives persistent lung fibrosis and impairs fibrosis resolution. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166842. [PMID: 37558008 DOI: 10.1016/j.bbadis.2023.166842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Lung fibrosis is a devastating outcome of various diffuse parenchymal lung diseases. Despite rigorous research efforts, the mechanisms that propagate its progressive and nonresolving nature remain enigmatic. Oxidative stress has been implicated in the pathogenesis of lung fibrosis. However, the role of extracellular redox state in disease progression and resolution remains largely unexplored. Here, we show that compartmentalized control over extracellular reactive oxygen species (ROS) by aerosolized delivery of recombinant extracellular superoxide dismutase (ECSOD) suppresses an established bleomycin-induced fibrotic process in mice. Further analysis of publicly available microarray, RNA-seq and single-cell RNAseq datasets reveals a significant decrease in ECSOD expression in fibrotic lung tissues that can be spontaneously restored during fibrosis resolution. Therefore, we investigate the effect of siRNA-mediated ECSOD depletion during the established fibrotic phase on the self-limiting nature of the bleomycin mouse model. Our results demonstrate that in vivo knockdown of ECSOD in mouse fibrotic lungs impairs fibrosis resolution. Mechanistically, we demonstrate that transforming growth factor (TGF)-β1 downregulates endogenous ECSOD expression, leading to the accumulation of extracellular superoxide via Smad-mediated signaling and the activation of additional stores of latent TGF-β1. In addition, depletion of endogenous ECSOD during the fibrotic phase in the bleomycin model induces an apoptosis-resistant phenotype in lung fibroblasts through unrestricted Akt signaling. Taken together, our data strongly support the critical role of extracellular redox state in fibrosis persistence and resolution. Based on these findings, we propose that compartment-specific control over extracellular ROS may be a potential therapeutic strategy for managing fibrotic lung disorders.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.
| | - Zeran Yang
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jianfeng Lei
- Medical Imaging Laboratory, Research Core Facilities, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
2
|
Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat Biotechnol 2022; 40:965-973. [DOI: 10.1038/s41587-021-01169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
|
3
|
Rac-dependent feedforward autoactivation of NOX2 leads to oxidative burst. J Biol Chem 2021; 297:100982. [PMID: 34293347 PMCID: PMC8353492 DOI: 10.1016/j.jbc.2021.100982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/03/2022] Open
Abstract
NADPH oxidase 2 (NOX2) produces the superoxide anion radical (O2−), which has functions in both cell signaling and immune defense. NOX2 is a multimeric-protein complex consisting of several protein subunits including the GTPase Rac. NOX2 uniquely facilitates an oxidative burst, which is described by initially slow O2− production, which increases over time. The NOX2 oxidative burst is considered critical to immune defense because it enables expedited O2− production in response to infections. However, the mechanism of the initiation and progression of this oxidative burst and its implications for regulation of NOX2 have not been clarified. In this study, we show that the NOX2 oxidative burst is a result of autoactivation of NOX2 coupled with the redox function of Rac. NOX2 autoactivation begins when active Rac triggers NOX2 activation and the subsequent production of O2−, which in turn activates redox-sensitive Rac. This activated Rac further activates NOX2, amplifying the feedforward cycle and resulting in a NOX2-mediated oxidative burst. Using mutagenesis-based kinetic and cell analyses, we show that enzymatic activation of Rac is exclusively responsible for production of the active Rac trigger that initiates NOX2 autoactivation, whereas redox-mediated Rac activation is the main driving force of NOX2 autoactivation and contributes to generation of ∼98% of the active NOX2 in cells. The results of this study provide insight into the regulation of NOX2 function, which could be used to develop therapeutics to control immune responses associated with dysregulated NOX2 oxidative bursts.
Collapse
|
4
|
Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J Inflamm Res 2021; 14:141-162. [PMID: 33505167 PMCID: PMC7829132 DOI: 10.2147/jir.s284941] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the most abundant immune cell type in the blood and constitute the first line of defense against invading pathogens. Despite their important role in many diseases, they are challenging to study due to their short life span and the inability to cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells freshly isolated from peripheral blood of human donors, introducing donor-dependent variation in the experimental data. To counteract these problems, researchers tried to develop adequate cell models, such as cell lines. For those functional studies that cannot rely on cell models, a standardization of protocols regarding neutrophil purification and culturing could be a solution. In this review, we provide an overview of the most commonly used models for neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). In addition, we describe the effects of glucose concentration, pH, oxygen tension and temperature on neutrophil function.
Collapse
Affiliation(s)
- Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
5
|
Zielonka J, Zielonka M, Cheng G, Hardy M, Kalyanaraman B. High-Throughput Screening of NOX Inhibitors. Methods Mol Biol 2020; 1982:429-446. [PMID: 31172487 DOI: 10.1007/978-1-4939-9424-3_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of new, selective inhibitors of nicotinamide adenine dinucleotide phosphate oxidase (NOX) isoforms is important both for basic studies on the role of these enzymes in cellular redox signaling, cell physiology, and proliferation and for development of new drugs for diseases carrying a component of increased NOX activity, such as several types of cancer and cardiovascular and neurodegenerative diseases. High-throughput screening (HTS) of large libraries of compounds remains the major approach for development of new NOX inhibitors. Here, we describe the protocol for the HTS campaign for NOX inhibitors using rigorous assays for superoxide radical anion and hydrogen peroxide, based on oxidation of hydropropidine, coumarin boronic acid, and Amplex Red. We propose using these three probes to screen for and identify new inhibitors, by selecting positive hits that show inhibitory effects in all three assays. Protocols for the synthesis of hydropropidine and for confirmatory assays, including oxygen consumption measurements, electron paramagnetic resonance spin trapping of superoxide, and simultaneous monitoring of superoxide and hydrogen peroxide, are also provided.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA. .,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA. .,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Micael Hardy
- Aix Marseille Université, CNRS, ICR, UMR 7273, Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Gupta-Wright A, Tembo D, Jambo KC, Chimbayo E, Mvaya L, Caldwell S, Russell DG, Mwandumba HC. Functional Analysis of Phagocyte Activity in Whole Blood from HIV/Tuberculosis-Infected Individuals Using a Novel Flow Cytometry-Based Assay. Front Immunol 2017; 8:1222. [PMID: 29033941 PMCID: PMC5624998 DOI: 10.3389/fimmu.2017.01222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/02/2022] Open
Abstract
The accurate assessment of immune competence through ex vivo analysis is paramount to our understanding of those immune mechanisms that lead to protection or susceptibility against a broad range of human pathogens. We have developed a flow cytometry-based, whole blood phagocyte functional assay that utilizes the inflammatory inducer zymosan, coupled to OxyBURST-SE, a fluorescent reporter of phagosomal oxidase activity. The assay measures both phagocytic uptake and the superoxide burst in the phagocyte populations in whole blood. We utilized this assay to demonstrate impaired superoxide burst activity in the phagocytes of hospitalized HIV-positive patients with laboratory-confirmed tuberculosis. These data validate the use of the assay to assess the immune competence of patients in a clinical setting. The method is highly reproducible with minimal intraindividual variation and opens opportunities for the rapid assessment of cellular immune competence in peripheral blood in a disease setting.
Collapse
Affiliation(s)
- Ankur Gupta-Wright
- College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dumizulu Tembo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kondwani C Jambo
- College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elizabeth Chimbayo
- College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Leonard Mvaya
- College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Shannon Caldwell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Henry C Mwandumba
- College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
7
|
Zielonka J, Zielonka M, VerPlank L, Cheng G, Hardy M, Ouari O, Ayhan MM, Podsiadły R, Sikora A, Lambeth JD, Kalyanaraman B. Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation. J Biol Chem 2016; 291:7029-44. [PMID: 26839313 DOI: 10.1074/jbc.m115.702787] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 01/09/2023] Open
Abstract
Using high throughput screening-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of the NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O2 (̇̄)), hydrogen peroxide (H2O2), and peroxynitrite (ONOO(-)), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO(-)formation in activated macrophages. A new diagnostic marker product for ONOO(-)is reported. We conclude that the newly developed high throughput screening/reactive oxygen species assays could also be used to identify potential inhibitors of ONOO(-)formed from Nox2-derived O2 (̇̄)and nitric oxide synthase-derived nitric oxide.
Collapse
Affiliation(s)
- Jacek Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
| | - Monika Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lynn VerPlank
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Gang Cheng
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Micael Hardy
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Olivier Ouari
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Mehmet Menaf Ayhan
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Radosław Podsiadły
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adam Sikora
- the Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland, and
| | - J David Lambeth
- the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322
| | - Balaraman Kalyanaraman
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
| |
Collapse
|
8
|
Abstract
BacMams are modified baculoviruses that contain mammalian expression cassettes for gene delivery and expression in mammalian cells. BacMams have become an integral part of the recombinant mammalian gene expression toolbox in research labs worldwide. Construction of transfer vectors is straightforward using basic molecular biology protocols. Virus generation is based on common methods used with the baculovirus insect cell expression system. BacMam transduction of mammalian cells requires minimal modifications to familiar cell culture methods. This chapter highlights the BacMam transfer vector pHTBV.
Collapse
|
9
|
Bee WT, Xie W, Truong M, Will M, Turunen B, Zuercher WJ, McMillan L, Li H, Hornberger KR, Davenport EA, Ames RS, Kallal LA. The Development of a High-Content Screening Binding Assay for the Smoothened Receptor. ACTA ACUST UNITED AC 2012; 17:900-11. [DOI: 10.1177/1087057112447872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the development of an image-based high-content screening (HCS) binding assay for the seven-transmembrane (7TM) receptor Smoothened (Smo) is described. Using BacMam-based gene delivery of Smo, BODIPY-cyclopamine as a fluorescent probe, and a confocal imaging system, a robust 384-well assay that could be used for high-throughput compound profiling activities was developed. The statistically robust HCS binding assay was developed through optimization of multiple parameters, including cell transduction conditions, Smo expression levels, the image analysis algorithm, and staining procedures. Evaluation of structurally diverse compounds, including functional Smo activators, inhibitors, and related analogs, demonstrated good compound potency correlations between high-content imaging binding, membrane fluorescence polarization binding, and gene reporter assays. Statistical analysis of data from a screening test set of compounds at a single 10-µM concentration suggested that the high-content imaging Smo binding assay is amenable for use in hit identification. The 384-well HCS assay was rapidly developed and met statistical assay performance targets, thus demonstrating its utility as a fluorescent whole-cell binding assay suitable for compound screening and profiling.
Collapse
Affiliation(s)
- Weilin Tiger Bee
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Wensheng Xie
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Maggie Truong
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Matthew Will
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, King of Prussia, PA, USA
| | - Brandon Turunen
- Discovery Medicinal Chemistry, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - William J. Zuercher
- Discovery Medicinal Chemistry, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Lynette McMillan
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, King of Prussia, PA, USA
| | - Hu Li
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Elizabeth A. Davenport
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Robert S. Ames
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Lorena A. Kallal
- Department of Biological Reagents and Assay Development, Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
10
|
NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res 2010; 342:325-39. [PMID: 21052718 DOI: 10.1007/s00441-010-1060-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are essential mediators of normal cell physiology. However, in the last few decades, it has become evident that ROS overproduction and/or alterations of the antioxidant system associated with inflammation and metabolic dysfunction are key pathological triggers of cardiovascular disorders. NADPH oxidases (Nox) represent a class of hetero-oligomeric enzymes whose primary function is the generation of ROS. In the vasculature, Nox-derived ROS contribute to the maintenance of vascular tone and regulate important processes such as cell growth, proliferation, differentiation, apoptosis, cytoskeletal organization, and cell migration. Under pathological conditions, excessive Nox-dependent ROS formation, which is generally associated with the up-regulation of different Nox subtypes, induces dysregulation of the redox control systems and promotes oxidative injury of the cardiovascular cells. The molecular mechanism of Nox-derived ROS generation and the means by which this class of molecule contributes to vascular damage remain debatable issues. This review focuses on the processes of ROS formation, molecular targets, and neutralization in the vasculature and provides an overview of the novel concepts regarding Nox functions, expression, and regulation in vascular health and disease. Because Nox enzymes are the most important sources of ROS in the vasculature, therapeutic perspectives to counteract Nox-dependent oxidative stress in the cardiovascular system are discussed.
Collapse
|