1
|
Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, Lebowitz MS, Fuller S, Biswas B, Stewart S, Dong X, Ghanbari H, Wands JR. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon 2017; 3:e00407. [PMID: 28971150 PMCID: PMC5619992 DOI: 10.1016/j.heliyon.2017.e00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/26/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. METHODS We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. RESULTS Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. CONCLUSIONS These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Miran Kim
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Kosuke Ogawa
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | | | - Steve Fuller
- Panacea Pharmaceuticals, Gaithersburg, MD, 20877, USA
| | | | | | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
2
|
Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28:849-58. [PMID: 20659548 DOI: 10.1016/j.biotechadv.2010.07.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
Abstract
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.
Collapse
Affiliation(s)
- Jyoti Pande
- Department of Medicine, HSC 4N41 McMaster Univ, Hamilton, ON, Canada
| | | | | |
Collapse
|