1
|
Ching KH, Berg K, Morales J, Pedersen D, Harriman WD, Abdiche YN, Leighton PA. Expression of human lambda expands the repertoire of OmniChickens. PLoS One 2020; 15:e0228164. [PMID: 31995598 PMCID: PMC6988971 DOI: 10.1371/journal.pone.0228164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.
Collapse
Affiliation(s)
- Kathryn H. Ching
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Kimberley Berg
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Jacqueline Morales
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Darlene Pedersen
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - William D. Harriman
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | | | - Philip A. Leighton
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| |
Collapse
|
2
|
Ching KH, Collarini EJ, Abdiche YN, Bedinger D, Pedersen D, Izquierdo S, Harriman R, Zhu L, Etches RJ, van de Lavoir MC, Harriman WD, Leighton PA. Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. MAbs 2017; 10:71-80. [PMID: 29035625 PMCID: PMC5800366 DOI: 10.1080/19420862.2017.1386825] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.
Collapse
Affiliation(s)
- Kathryn H Ching
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Ellen J Collarini
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Yasmina N Abdiche
- b Carterra, Inc. , 825 N. 300 W., Suite C309, Salt Lake City , UT , USA
| | - Daniel Bedinger
- b Carterra, Inc. , 825 N. 300 W., Suite C309, Salt Lake City , UT , USA
| | - Darlene Pedersen
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Shelley Izquierdo
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Rian Harriman
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Lei Zhu
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Robert J Etches
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | | | - William D Harriman
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Philip A Leighton
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| |
Collapse
|
3
|
Clausen RP, Mohr AØ, Riise E, Jensen AA, Gill A, Madden DR, Kastrup JS, Skottrup PD. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain. Int J Biol Macromol 2016; 92:779-787. [PMID: 27402461 DOI: 10.1016/j.ijbiomac.2016.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022]
Abstract
A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4, the likely binding epitope for FabL9 was predicted. This study demonstrates a simple approach for development of antibody fragments towards specific sub-domains of a large ligand-gated ion channel, and this method could be utilized for all multi-domain surface receptors where antibody domain-selectivity may be desirable. Furthermore, we present for the first time a GluA4 subtype-specific murine Fab fragment targeting the LBD of the receptor.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Andreas Ø Mohr
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Erik Riise
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Avinash Gill
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Peter D Skottrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre, DK-2650, Denmark.
| |
Collapse
|
4
|
Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display. PLoS One 2015; 10:e0127169. [PMID: 25993332 PMCID: PMC4439027 DOI: 10.1371/journal.pone.0127169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 12/04/2022] Open
Abstract
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.
Collapse
Affiliation(s)
- Thomas Keller
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Romana Kalt
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Raab
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Corina Mayrhofer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
5
|
Leighton PA, Schusser B, Yi H, Glanville J, Harriman W. A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation. Front Immunol 2015; 6:126. [PMID: 25852694 PMCID: PMC4367436 DOI: 10.3389/fimmu.2015.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022] Open
Abstract
Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen , Munich , Germany
| | - Henry Yi
- Crystal Bioscience Inc , Emeryville, CA , USA
| | | | | |
Collapse
|
6
|
Conroy PJ, Law RHP, Gilgunn S, Hearty S, Caradoc-Davies TT, Lloyd G, O'Kennedy RJ, Whisstock JC. Reconciling the structural attributes of avian antibodies. J Biol Chem 2014; 289:15384-92. [PMID: 24737329 DOI: 10.1074/jbc.m114.562470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibodies are high value therapeutic, diagnostic, biotechnological, and research tools. Combinatorial approaches to antibody discovery have facilitated access to unique antibodies by surpassing the diversity limitations of the natural repertoire, exploitation of immune repertoires from multiple species, and tailoring selections to isolate antibodies with desirable biophysical attributes. The V-gene repertoire of the chicken does not utilize highly diverse sequence and structures, which is in stark contrast to the mechanism employed by humans, mice, and primates. Recent exploitation of the avian immune system has generated high quality, high affinity antibodies to a wide range of antigens for a number of therapeutic, diagnostic and biotechnological applications. Furthermore, extensive examination of the amino acid characteristics of the chicken repertoire has provided significant insight into mechanisms employed by the avian immune system. A paucity of avian antibody crystal structures has limited our understanding of the structural consequences of these uniquely chicken features. This paper presents the crystal structure of two chicken single chain fragment variable (scFv) antibodies generated from large libraries by phage display against important human antigen targets, which capture two unique CDRL1 canonical classes in the presence and absence of a non-canonical disulfide constrained CDRH3. These structures cast light on the unique structural features of chicken antibodies and contribute further to our collective understanding of the unique mechanisms of diversity and biochemical attributes that render the chicken repertoire of particular value for antibody generation.
Collapse
Affiliation(s)
- Paul J Conroy
- From the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3800, Australia
| | - Ruby H P Law
- From the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3800, Australia
| | - Sarah Gilgunn
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Stephen Hearty
- Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland, and
| | - Tom T Caradoc-Davies
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Gordon Lloyd
- From the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3800, Australia
| | - Richard J O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, Ireland, Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland, and
| | - James C Whisstock
- From the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3800, Australia,
| |
Collapse
|
7
|
Beck A, Carter PJ, Gerber HP, Lugovskoy AA, Wurch T, Junutula JR, Kontermann RE, Mabry R. 8(th) Annual European Antibody Congress 2012: November 27-28, 2012, Geneva, Switzerland. MAbs 2013; 5:339-57. [PMID: 23493119 PMCID: PMC4169028 DOI: 10.4161/mabs.24105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics.
The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint-Julien en Genevois, France
| | | | | | | | - Thierry Wurch
- Institut de Recherches SERVIER; Croissy-sur-Seine, France
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology; University of Stuttgart; Stuttgart, Germany
| | | |
Collapse
|
8
|
Cunningham S, Starr E, Shaw I, Glavin J, Kane M, Joshi L. Development of a convenient competitive ELISA for the detection of the free and protein-bound nonhuman galactosyl-α-(1,3)-galactose epitope based on highly specific chicken single-chain antibody variable-region fragments. Anal Chem 2012; 85:949-55. [PMID: 23215249 DOI: 10.1021/ac302587q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The presence of the nonhuman galactosyl-α-(1,3)-galactose (Gal-α-(1,3)-Gal) carbohydrate epitope on a number of recombinant therapeutic proteins has recently been reported, renewing interest in this immunogenic carbohydrate epitope. It is well-known that this motif is the primary contributing factor in hyperacute rejection of porcine organ xenograft, due to the existence of natural antibodies against this epitope in human serum. Though the number of epitopes on recombinant glycoproteins may be low when compared directly to whole tissue, circulating anti-Gal-α-R immunoglobulins can still induce anaphylaxis. Therefore, there is a need for rapid and convenient methods for detection and monitoring of this epitope in biopharmaceuticals produced in recombinant mammalian systems. To this end, we have generated immune-challenged chicken single-chain antibody variable-region fragment (scFv) libraries targeting the Gal-α-(1,3)-Gal motif and have selected a panel of scFv's that bind the target. We have used one of these antibodies to develop a competitive ELISA for both free and protein-bound Gal-α-(1,3)-Gal and have demonstrated that the ELISA is specific for the target and can be used to determine the loading of the target on glycoproteins. This competitive ELISA will provide a convenient method of detecting and quantifying Gal-α-(1,3)-Gal on therapeutic glycoproteins.
Collapse
Affiliation(s)
- Stephen Cunningham
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Spillner E, Braren I, Greunke K, Seismann H, Blank S, du Plessis D. Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals 2012; 40:313-22. [PMID: 22748514 PMCID: PMC7106491 DOI: 10.1016/j.biologicals.2012.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 04/10/2012] [Accepted: 05/18/2012] [Indexed: 01/29/2023] Open
Abstract
The generation and use of avian antibodies is of increasing interest in a wide variety of applications within the life sciences. Due to their phylogenetic distance, mechanisms of immune diversification and the way in which they deposit IgY immunoglobulin in the egg yolk, chickens provide a number of advantages compared to mammals as hosts for immunization. These advantages include: the one-step purification of antibodies from egg yolk in large amounts facilitates having a virtually continuous supply; the epitope spectrum of avian antibodies potentially grants access to novel specificities; the broad absence of cross-reactivity with mammalian epitopes avoids assay interference and improves the performance of immunological techniques. The polyclonal nature of IgY antibodies has limited their use since avian hybridoma techniques are not well established. Recombinant IgY, however, can be generated from mammalian monoclonal antibodies which makes it possible to further exploit the advantageous properties of the IgY scaffold. Moreover, cloning and selecting the immune repertoire from avian organisms is highly efficient, yielding antigen-specific antibody fragments. The recombinant approach is well suited to circumvent any limitations of polyclonal antibodies. This review presents comprehensive information on the generation, purification, modification and applications of polyclonal and monoclonal IgY antibodies.
Collapse
Affiliation(s)
- Edzard Spillner
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|