1
|
Ulku I, Liebsch F, Akerman SC, Schulz JF, Kulic L, Hock C, Pietrzik C, Di Spiezio A, Thinakaran G, Saftig P, Multhaup G. Mechanisms of amyloid-β34 generation indicate a pivotal role for BACE1 in amyloid homeostasis. Sci Rep 2023; 13:2216. [PMID: 36750595 PMCID: PMC9905473 DOI: 10.1038/s41598-023-28846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
The beta‑site amyloid precursor protein (APP) cleaving enzyme (BACE1) was discovered due to its "amyloidogenic" activity which contributes to the production of amyloid-beta (Aβ) peptides. However, BACE1 also possesses an "amyloidolytic" activity, whereby it degrades longer Aβ peptides into a non‑toxic Aβ34 intermediate. Here, we examine conditions that shift the equilibrium between BACE1 amyloidogenic and amyloidolytic activities by altering BACE1/APP ratios. In Alzheimer disease brain tissue, we found an association between elevated levels of BACE1 and Aβ34. In mice, the deletion of one BACE1 gene copy reduced BACE1 amyloidolytic activity by ~ 50%. In cells, a stepwise increase of BACE1 but not APP expression promoted amyloidolytic cleavage resulting in dose-dependently increased Aβ34 levels. At the cellular level, a mislocalization of surplus BACE1 caused a reduction in Aβ34 levels. To align the role of γ-secretase in this pathway, we silenced Presenilin (PS) expression and identified PS2-γ-secretase as the main γ-secretase that generates Aβ40 and Aβ42 peptides serving as substrates for BACE1's amyloidolytic cleavage to generate Aβ34.
Collapse
Affiliation(s)
- Irem Ulku
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Filip Liebsch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada.,Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | - S Can Akerman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jana F Schulz
- Institut Für Chemie Und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany.,Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Luka Kulic
- Roche Pharma Research & Early Development, F.Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, Un Iversity of Zurich, 8952, Schlieren, Switzerland.,Neurimmune AG, 8952, Schlieren, Switzerland
| | - Claus Pietrzik
- Department Molecular Neurodegeneration, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | - Gopal Thinakaran
- Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Gerhard Multhaup
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
2
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
3
|
Gunnarsson A, Snijder A, Hicks J, Gunnarsson J, Höök F, Geschwindner S. Drug Discovery at the Single Molecule Level: Inhibition-in-Solution Assay of Membrane-Reconstituted β-Secretase Using Single-Molecule Imaging. Anal Chem 2015; 87:4100-3. [DOI: 10.1021/acs.analchem.5b00740] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anders Gunnarsson
- Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Arjan Snijder
- Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Jennifer Hicks
- Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Jenny Gunnarsson
- Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Fredrik Höök
- Department
of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | |
Collapse
|