1
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
2
|
Wang HD, Xu JZ, Zhang WG. Metabolic engineering of Escherichia coli for efficient production of L-arginine. Appl Microbiol Biotechnol 2022; 106:5603-5613. [PMID: 35931894 DOI: 10.1007/s00253-022-12109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
As an important semi-essential amino acid, L-arginine (L-Arg) has important application prospects in medicine and health care. However, it remains a challenge to efficiently produce L-Arg by Escherichia coli (E. coli). In the present study, we obtained an E. coli A1 with L-Arg accumulation ability, and carried out a series of metabolic engineering on it, and finally obtained an E. coli strain A7 with high L-Arg production ability. First, genome analysis of strain A1 was performed to explore the related genes affecting L-Arg accumulation. We found that gene speC and gene speF played an important role in the accumulation of L-Arg. Second, we used two strategies to solve the feedback inhibition of the L-Arg pathway in E. coli. One was the combination of a mutation of the gene argA and the deletion of the gene argR, and the other was the combination of a heterologous insertion of the gene argJ and the deletion of the gene argR. The combination of exogenous argJ gene insertion and argR gene deletion achieved higher titer accumulation with less impact on strain growth. Finally, we inserted the gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamicum) to enhance the metabolic flux of the L-Arg pathway in E. coli. The final strain obtained 70.1 g/L L-Arg in a 5-L bioreactor, with a yield of 0.326 g/g glucose and a productivity of 1.17 g/(L· h). This was the highest level of L-Arg production by E. coli ever reported. Collectively, our findings provided valuable insights into the possibility of the industrial production of L-Arg by E. coli. KEY POINTS: • Genetic background of E. coli A1 genome analysis. • Heterologous argJ substitution of argA mutation promoted excessive accumulation of L-Arg in E. coli A1. • The overexpression of L-Arg synthesis gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamate) promoted the accumulation of L-Arg, and 70.1 g/L L-Arg was finally obtained in fed-batch fermentation.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| |
Collapse
|
3
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|
4
|
Cai MZ, Chen PT. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis. J Biosci Bioeng 2021; 132:113-119. [PMID: 33994114 DOI: 10.1016/j.jbiosc.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
To improve the stability and expand applications of genome editing in Bacillus subtilis, we propose a new concept of the Cre-Cas system, which combines Cre-lox72 and CRISPR-Cas9 into an effective and convenient method. Single homologous recombination is used to introduce the integration vector into the chromosome via appropriate guide DNA to inactivate and/or insert genes of interest. The Cre recombinase then removes the region of a selection marker that is no longer needed, and the Escherichia coli replicon between the lox66 and lox71 sites are recombined to a single lox72 site. The CRISPR-Cas9 system can then be applied to remove the inserted foreign gene by targeted cutting. After Cas9 cutting, B. subtilis self-repairs the broken region to its original state without the aid of additional DNA templates. To validate this system, we used T7 and keratinase expression cassettes; self-repair efficiency was evaluated based on the loss or maintenance of the antibiotic resistance gene, as analyzed on selective media. Our results demonstrated that the insertion position in the chromosome is a more critical factor than the insertion length of the gene for efficient self-repair in the B. subtilis genome. This concept can provide the applicability of chromosomal editing in B. subtilis.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan.
| |
Collapse
|
5
|
Powell JR. Genetic Variation in Insect Vectors: Death of Typology? INSECTS 2018; 9:E139. [PMID: 30314367 PMCID: PMC6316525 DOI: 10.3390/insects9040139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
The issue of typological versus population thinking in biology is briefly introduced and defined. It is then emphasized how population thinking is most relevant and useful in vector biology. Three points are made: (1) Vectors, as they exist in nature, are genetically very heterogeneous. (2) Four examples of how this is relevant in vector biology research are presented: Understanding variation in vector competence, GWAS, identifying the origin of new introductions of invasive species, and resistance to inbreeding. (3) The existence of high levels of vector genetic heterogeneity can lead to failure of some approaches to vector control, e.g., use of insecticides and release of sterile males (SIT). On the other hand, vector genetic heterogeneity can be harnessed in a vector control program based on selection for refractoriness.
Collapse
Affiliation(s)
- Jeffrey R Powell
- Yale University, 21 Sachem Street, New Haven, CT 06520-8105, USA.
| |
Collapse
|
6
|
Early Probe and Drug Discovery in Academia: A Minireview. High Throughput 2018; 7:ht7010004. [PMID: 29485615 PMCID: PMC5876530 DOI: 10.3390/ht7010004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Drug discovery encompasses processes ranging from target selection and validation to the selection of a development candidate. While comprehensive drug discovery work flows are implemented predominantly in the big pharma domain, early discovery focus in academia serves to identify probe molecules that can serve as tools to study targets or pathways. Despite differences in the ultimate goals of the private and academic sectors, the same basic principles define the best practices in early discovery research. A successful early discovery program is built on strong target definition and validation using a diverse set of biochemical and cell-based assays with functional relevance to the biological system being studied. The chemicals identified as hits undergo extensive scaffold optimization and are characterized for their target specificity and off-target effects in in vitro and in animal models. While the active compounds from screening campaigns pass through highly stringent chemical and Absorption, Distribution, Metabolism, and Excretion (ADME) filters for lead identification, the probe discovery involves limited medicinal chemistry optimization. The goal of probe discovery is identification of a compound with sub-µM activity and reasonable selectivity in the context of the target being studied. The compounds identified from probe discovery can also serve as starting scaffolds for lead optimization studies.
Collapse
|
7
|
Schaefer C, Mallela N, Seggewiß J, Lechtape B, Omran H, Dirksen U, Korsching E, Potratz J. Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm. PLoS One 2018; 13:e0191570. [PMID: 29385199 PMCID: PMC5792015 DOI: 10.1371/journal.pone.0191570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022] Open
Abstract
In the search for novel therapeutic targets, RNA interference screening has become a valuable tool. High-throughput technologies are now broadly accessible but their assay development from baseline remains resource-intensive and challenging. Focusing on this assay development process, we here describe a target discovery screen using pooled shRNA libraries and next-generation sequencing (NGS) deconvolution in a cell line model of Ewing sarcoma. In a strategy designed for comparative and synthetic lethal studies, we screened for targets specific to the A673 Ewing sarcoma cell line. Methods, results and pitfalls are described for the entire multi-step screening procedure, from lentiviral shRNA delivery to bioinformatics analysis, illustrating a complete model workflow. We demonstrate that successful studies are feasible from the first assay performance and independent of specialized screening units. Furthermore, we show that a resource-saving screen depth of 100-fold average shRNA representation can suffice to generate reproducible target hits despite heterogeneity in the derived datasets. Because statistical analysis methods are debatable for such datasets, we created ProFED, an analysis package designed to facilitate descriptive data analysis and hit calling using an aim-oriented profile filtering approach. In its versatile design, this open-source online tool provides fast and easy analysis of shRNA and other count-based datasets to complement other analytical algorithms.
Collapse
Affiliation(s)
- Christiane Schaefer
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Nikhil Mallela
- Institute of Bioinformatics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Birgit Lechtape
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Heymut Omran
- General Pediatrics, University Hospital Münster, Münster, Germany
| | - Uta Dirksen
- Department of Hematology and Oncology, Pediatrics III, West German Cancer Center, German Cancer Consortium (DKTK) Center Essen, University Hospital Essen, Essen, Germany
| | - Eberhard Korsching
- Institute of Bioinformatics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jenny Potratz
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
- General Pediatrics, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
8
|
Pegoraro G, Misteli T. High-Throughput Imaging for the Discovery of Cellular Mechanisms of Disease. Trends Genet 2017; 33:604-615. [PMID: 28732598 DOI: 10.1016/j.tig.2017.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022]
Abstract
High-throughput imaging (HTI) is a powerful tool in the discovery of cellular disease mechanisms. While traditional approaches to identify disease pathways often rely on knowledge of the causative genetic defect, HTI-based screens offer an unbiased discovery approach based on any morphological or functional defects of disease cells or tissues. In this review, we provide an overview of the use of HTI for the study of human disease mechanisms. We discuss key technical aspects of HTI and highlight representative examples of its practical applications for the discovery of molecular mechanisms of disease, focusing on infectious diseases and host-pathogen interactions, cancer, and rare genetic diseases. We also present some of the current challenges and possible solutions offered by novel cell culture systems and genome engineering approaches.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- NCI High-Throughput Imaging Facility, Bethesda, MD 20892, USA; Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
10
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Prabhu V, Xu H. Endonuclease mediated genome editing in drug discovery and development: promises and challenges. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:17-25. [PMID: 27978983 DOI: 10.1016/j.ddtec.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Site specific genome editing has been gradually employed in drug discovery and development process over the past few decades. Recent development of CRISPR technology has significantly accelerated the incorporation of genome editing in the bench side to bedside process. In this review, we summarize examples of applications of genome editing in the drug discovery and development process. We also discuss current hurdles and solutions of genome editing.
Collapse
Affiliation(s)
- Vidya Prabhu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Han Xu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
12
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
13
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|
14
|
Patel S, Jones RB, Nixon DF, Bollard CM. T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy 2016; 18:931-942. [PMID: 27265874 DOI: 10.1016/j.jcyt.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
Although antiretroviral therapy (ART) has been successful in controlling HIV infection, it does not provide a permanent cure, requires lifelong treatment, and HIV-positive individuals are left with social concerns such as stigma. The recent application of T cells to treat cancer and viral reactivations post-transplant offers a potential strategy to control HIV infection. It is known that naturally occurring HIV-specific T cells can inhibit HIV initially, but this response is not sustained in the majority of people living with HIV. Genetically modifying T cells to target HIV, resist infection, and persist in the immunosuppressive environment found in chronically infected HIV-positive individuals might provide a therapeutic solution for HIV. This review focuses on successful preclinical studies and current clinical strategies using T-cell therapy to control HIV infection and mediate a functional cure solution.
Collapse
Affiliation(s)
- Shabnum Patel
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
15
|
Song L, Chen J, Peng G, Tang K, Jing N. Dynamic Heterogeneity of Brachyury in Mouse Epiblast Stem Cells Mediates Distinct Response to Extrinsic Bone Morphogenetic Protein (BMP) Signaling. J Biol Chem 2016; 291:15212-25. [PMID: 27226536 DOI: 10.1074/jbc.m115.705418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 01/11/2023] Open
Abstract
Mouse pluripotent cells, such as embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), provide excellent in vitro systems to study imperative pre- and postimplantation events of in vivo mammalian development. It is known that mouse ESCs are dynamic heterogeneous populations. However, it remains largely unclear whether and how EpiSCs possess heterogeneity and plasticity similar to that of ESCs. Here, we show that EpiSCs are discriminated by the expression of a specific marker T (Brachyury) into two populations. The T-positive (T(+)) and the T-negative (T(-)) populations can be interconverted within the same culture condition. In addition, the two populations display distinct responses to bone morphogenetic protein (BMP) signaling and different developmental potentials. The T(-) EpiSCs are preferentially differentiated into ectoderm lineages, whereas T(+) EpiSCs have a biased potential for mesendoderm fates. Mechanistic studies reveal that T(+) EpiSCs have an earlier and faster response to BMP4 stimulation than T(-) EpiSCs. Id1 mediates the commitment of T(-) EpiSCs to epidermal lineage during BMP4 treatment. On the other hand, Snail modulates the conversion of T(+) EpiSCs to mesendoderm fates with the presence of BMP4. Furthermore, T expression is essential for epithelial-mesenchymal transition during EpiSCs differentiation. Our findings suggest that the dynamic heterogeneity of the T(+)/T(-) subpopulation primes EpiSCs toward particular cell lineages, providing important insights into the dynamic development of the early mouse embryo.
Collapse
Affiliation(s)
- Lu Song
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Jun Chen
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Guangdun Peng
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| |
Collapse
|
16
|
Moutsatsos IK, Parker CN. Recent advances in quantitative high throughput and high content data analysis. Expert Opin Drug Discov 2016; 11:415-23. [PMID: 26924521 DOI: 10.1517/17460441.2016.1154036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. AREAS COVERED This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. EXPERT OPINION As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.
Collapse
Affiliation(s)
- Ioannis K Moutsatsos
- a Novartis Institute of Biomedical Research , Novartis - Developmental and Molecular Pathways (DMP) , Basel , Switzerland
| | - Christian N Parker
- a Novartis Institute of Biomedical Research , Novartis - Developmental and Molecular Pathways (DMP) , Basel , Switzerland
| |
Collapse
|
17
|
Schook LB, Rund L, Begnini KR, Remião MH, Seixas FK, Collares T. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models. Front Genet 2016; 7:28. [PMID: 26973698 PMCID: PMC4770043 DOI: 10.3389/fgene.2016.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/13/2016] [Indexed: 12/26/2022] Open
Abstract
There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.
Collapse
Affiliation(s)
- Lawrence B Schook
- University of Illinois Cancer Center, University of Illinois at ChicagoChicago, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-ChampaignChampaign, IL, USA
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign Champaign, IL, USA
| | - Karine R Begnini
- Postgraduate Program in Biotechnology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas Pelotas, Brazil
| | - Mariana H Remião
- Postgraduate Program in Biotechnology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas Pelotas, Brazil
| | - Fabiana K Seixas
- Postgraduate Program in Biotechnology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas Pelotas, Brazil
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas Pelotas, Brazil
| |
Collapse
|
18
|
Himeda CL, Jones TI, Jones PL. Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies. Trends Pharmacol Sci 2016; 37:249-251. [PMID: 26917062 DOI: 10.1016/j.tips.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Versatility of CRISPR/Cas9-based platforms makes them promising tools for the correction of diverse genetic/epigenetic disorders. Here we contrast the use of these genome editing tools in two myopathies with very different molecular origins: Duchenne muscular dystrophy, a monogenetic disease, and facioscapulohumeral muscular dystrophy, an epigenetic disorder with unique therapeutic challenges.
Collapse
Affiliation(s)
- Charis L Himeda
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Takako I Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Peter L Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
19
|
Jia Y, Chen L, Ma Y, Zhang J, Xu N, Liao DJ. To Know How a Gene Works, We Need to Redefine It First but then, More Importantly, to Let the Cell Itself Decide How to Transcribe and Process Its RNAs. Int J Biol Sci 2015; 11:1413-23. [PMID: 26681921 PMCID: PMC4671999 DOI: 10.7150/ijbs.13436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Recent genomic and ribonomic research reveals that our genome produces a stupendous amount of non-coding RNAs (ncRNAs), including antisense RNAs, and that many genes contain other gene(s) in their introns. Since ncRNAs either regulate the transcription, translation or stability of mRNAs or directly exert cellular functions, they should be regarded as the fourth category of RNAs, after ribosomal, messenger and transfer RNAs. These and other research advances challenge the current concept of gene and raise a question as to how we should redefine gene. We can either consider each tiny part of the classically-defined gene, such as each mRNA variant, as a “gene”, or, alternatively and oppositely, regard a whole genomic locus as a “gene” that may contain intron-embedded genes and produce different types of RNAs and proteins. Each of the two ways to redefine gene not only has its strengths and weaknesses but also has its particular concern on the methodology for the determination of the gene's function: Ectopic expression of complementary DNA (cDNA) in cells has in the past decades provided us with great deal of detail about the functions of individual mRNA variants, and will make the data less conflicting with each other if just a small part of a classically-defined gene is considered as a “gene”. On the other hand, genomic DNA (gDNA) will better help us in understanding the collective function of a genomic locus. In our opinion, we need to be more cautious in the use of cDNA and in the explanation of data resulting from cDNA, and, instead, should make delivery of gDNA into cells routine in determination of genes' functions, although this demands some technology renovation.
Collapse
Affiliation(s)
- Yuping Jia
- 1. Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong, 250101, P.R. China
| | - Lichan Chen
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yukui Ma
- 1. Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong, 250101, P.R. China
| | - Jian Zhang
- 3. Center for Translational Medicine, Pharmacology and Biomedical Sciences Building, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, P.R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | | |
Collapse
|
20
|
Abstract
Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders.
Collapse
|
21
|
Ma Y, Jia Y, Chen L, Ezeogu L, Yu B, Xu N, Liao DJ. Weaknesses and Pitfalls of Using Mice and Rats in Cancer Chemoprevention Studies. J Cancer 2015; 6:1058-65. [PMID: 26366220 PMCID: PMC4565856 DOI: 10.7150/jca.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/19/2015] [Indexed: 12/31/2022] Open
Abstract
Many studies, using different chemical agents, have shown excellent cancer prevention efficacy in mice and rats. However, equivalent tests of cancer prevention in humans require decades of intake of the agents while the rodents' short lifespans cannot give us information of the long-term safety. Therefore, animals with a much longer lifespan should be used to bridge the lifespan gap between the rodents and humans. There are many transgenic mouse models of carcinogenesis available, in which DNA promoters are used to activate transgenes. One promoter may activate the transgene in multiple cell types while different promoters are activated at different ages of the mice. These spatial and temporal aspects of transgenes are often neglected and may be pitfalls or weaknesses in chemoprevention studies. The variation in the copy number of the transgene may widen data variation and requires use of more animals. Models of chemically-induced carcinogenesis do not have these transgene-related defects, but chemical carcinogens usually damage metabolic organs or tissues, thus affecting the metabolism of the chemopreventive agents. Moreover, many genetically edited and some chemically-induced carcinogenesis models produce tumors that exhibit cancerous histology but are not cancers because the tumor cells are still mortal, inducer-dependent, and unable to metastasize, and thus should be used with caution in chemoprevention studies. Lastly, since mice prefer an ambient temperature of 30-32°C, it should be debated whether future mouse studies should be performed at this temperature, but not at 21-23°C that cold-stresses the animals.
Collapse
Affiliation(s)
- Yukui Ma
- 1. Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, P.R. China
| | - Yuping Jia
- 1. Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, P.R. China
| | - Lichan Chen
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lewis Ezeogu
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Baofa Yu
- 3. Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye Yuan, Chang Pin Qu, Beijing 102206, P.R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
22
|
Bickle M, Djaballah H, Mayr LM. The King Is Dead, Long Live the King! JBS Special Issue on Screening by RNAi and Precise Genome Editing Technologies. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:929-31. [PMID: 26290575 DOI: 10.1177/1087057115596132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
De Vilder EYG, Hosen MJ, Vanakker OM. The ABCC6 Transporter as a Paradigm for Networking from an Orphan Disease to Complex Disorders. BIOMED RESEARCH INTERNATIONAL 2015; 2015:648569. [PMID: 26356190 PMCID: PMC4555454 DOI: 10.1155/2015/648569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/16/2023]
Abstract
The knowledge on the genetic etiology of complex disorders largely results from the study of rare monogenic disorders. Often these common and rare diseases show phenotypic overlap, though monogenic diseases generally have a more extreme symptomatology. ABCC6, the gene responsible for pseudoxanthoma elasticum, an autosomal recessive ectopic mineralization disorder, can be considered a paradigm gene with relevance that reaches far beyond this enigmatic orphan disease. Indeed, common traits such as chronic kidney disease or cardiovascular disorders have been linked to the ABCC6 gene. While during the last decade the awareness of the wide ramifications of ABCC6 has increased significantly, the gene itself and the transmembrane transporter it encodes have not unveiled all of the mysteries that surround them. To gain more insights, multiple approaches are being used including next-generation sequencing, computational methods, and various "omics" technologies. Much effort is made to place the vast amount of data that is gathered in an integrated system-biological network; the involvement of ABCC6 in common disorders provides a good view on the wide implications and potential of such a network. In this review, we summarize the network approaches used to study ABCC6 and the role of this gene in several complex diseases.
Collapse
Affiliation(s)
- Eva Y. G. De Vilder
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | |
Collapse
|