1
|
Gao Y, Peng H, Li L, Wang F, Meng J, Huang H, Wang S, Li PCH, Sun Y. Screening of high-efficiency and low-toxicity antitumor active components in Macleaya cordata seeds based on the competitive effect of drugs on double targets by a new laminar flow chip. Analyst 2021; 146:4934-4944. [PMID: 34254080 DOI: 10.1039/d1an00754h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is urgent to obtain targeted drugs that selectively bind to pathological targets rather than physiological targets in the early stage of drug screening. G-Quadruplex has become one of the important targets in the development of anti-tumor drugs. However, drugs that target quadruplexes may also bind to dsDNA, which may lead to adverse reactions. In this study, a new three-phase laminar flow chip was constructed to enable the multi-components of a traditional Chinese medicine extract to dynamically and competitively bind with G-quadruplex DNA (on target) and double-stranded DNA (off target), so as to select high-efficiency and low-toxicity anti-tumor drugs. The results showed that there were five compounds in the extracts of Macleaya cordata seeds that exhibited obvious differences in binding to the two targets. Furthermore, the binding constants and modes of four identified alkaloids as they bound to two DNA targets were verified by fluorescence spectra and molecular docking methods. The toxicity to HepG2 and LO2 cells from the four alkaloids was also compared. The results showed that sanguinarine and chelerythrine could be used as candidate drugs with stronger binding to HT24 than DNA26. The chip can also be used for other types of double-target screening of other traditional Chinese medicine extracts or compound libraries.
Collapse
Affiliation(s)
- Yan Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jigar Panchal H, Kent NJ, Knox AJS, Harris LF. Microfluidics in Haemostasis: A Review. Molecules 2020; 25:E833. [PMID: 32075008 PMCID: PMC7070452 DOI: 10.3390/molecules25040833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Haemostatic disorders are both complex and costly in relation to both their treatment and subsequent management. As leading causes of mortality worldwide, there is an ever-increasing drive to improve the diagnosis and prevention of haemostatic disorders. The field of microfluidic and Lab on a Chip (LOC) technologies is rapidly advancing and the important role of miniaturised diagnostics is becoming more evident in the healthcare system, with particular importance in near patient testing (NPT) and point of care (POC) settings. Microfluidic technologies present innovative solutions to diagnostic and clinical challenges which have the knock-on effect of improving health care and quality of life. In this review, both advanced microfluidic devices (R&D) and commercially available devices for the diagnosis and monitoring of haemostasis-related disorders and antithrombotic therapies, respectively, are discussed. Innovative design specifications, fabrication techniques, and modes of detection in addition to the materials used in developing micro-channels are reviewed in the context of application to the field of haemostasis.
Collapse
Affiliation(s)
- Heta Jigar Panchal
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| | - Nigel J Kent
- engCORE, Faculty of Engineering, Institute of Technology Carlow, Kilkenny Road, Carlow R93 V960, Ireland;
| | - Andrew J S Knox
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| | - Leanne F Harris
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| |
Collapse
|
3
|
Huang L, Yu W, Guo X, Huang Y, Zhou Q, Zhai H. Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Zietek BM, Still KBM, Jaschusch K, Bruyneel B, Ariese F, Brouwer TJF, Luger M, Limburg RJ, Rosier JC, V Iperen DJ, Casewell NR, Somsen GW, Kool J. Bioactivity Profiling of Small-Volume Samples by Nano Liquid Chromatography Coupled to Microarray Bioassaying Using High-Resolution Fractionation. Anal Chem 2019; 91:10458-10466. [PMID: 31373797 PMCID: PMC6706796 DOI: 10.1021/acs.analchem.9b01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
High-throughput
screening platforms for the identification of bioactive
compounds in mixtures have become important tools in the drug discovery
process. Miniaturization of such screening systems may overcome problems
associated with small sample volumes and enhance throughput and sensitivity.
Here we present a new screening platform, coined picofractionation
analytics, which encompasses microarray bioassays and mass spectrometry
(MS) of components from minute amounts of samples after their nano
liquid chromatographic (nanoLC) separation. Herein, nanoLC was coupled
to a low-volume liquid dispenser equipped with pressure-fed solenoid
valves, enabling 50-nL volumes of column effluent (300 nL/min) to
be discretely deposited on a glass slide. The resulting fractions
were dried and subsequently bioassayed by sequential printing of nL-volumes
of reagents on top of the spots. Unwanted evaporation of bioassay
liquids was circumvented by employing mineral oil droplets. A fluorescence
microscope was used for assay readout in kinetic mode. Bioassay data
were correlated to MS data obtained using the same nanoLC conditions
in order to assign bioactives. The platform provides the possibility
of freely choosing a wide diversity of bioassay formats, including
those requiring long incubation times. The new method was compared
to a standard bioassay approach, and its applicability was demonstrated
by screening plasmin inhibitors and fibrinolytic bioactives from mixtures
of standards and snake venoms, revealing active peptides and coagulopathic
proteases.
Collapse
Affiliation(s)
- Barbara M Zietek
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kristina B M Still
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kevin Jaschusch
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Freek Ariese
- LaserLaB , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Tinco J F Brouwer
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Matthijs Luger
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Rob J Limburg
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Joost C Rosier
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Dick J V Iperen
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K.,Centre for Drugs and Diagnostics , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| |
Collapse
|
5
|
Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon 2018; 152:1-8. [DOI: 10.1016/j.toxicon.2018.06.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
|
6
|
Xu Z, Liu R, Guan H. Dual-target inhibitor screening against thrombin and factor Xa simultaneously by mass spectrometry. Anal Chim Acta 2017; 990:1-10. [PMID: 29029731 DOI: 10.1016/j.aca.2017.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
An accurate, rapid, and cost-effective methodology for enzyme assay is highly demanded to screen the effect of compounds on target at the molecular level. Thrombin (EC 3.4.21.5) and factor Xa (FXa, EC 3.4.21.6) have been identified as the critical targets for the development of potential drugs with anticoagulant activity. In this study, a rapid, sensitive and accurate assay based on UHPLC-MS/MS method has been developed for inhibitor screening against thrombin and factor Xa simultaneously. For thrombin and factor Xa, the Michaelis-Menten constants (Km) were calculated to be 6.14 and 57.27 μM, respectively. The inhibition constants (Ki) for two known inhibitors, argatroban and rivaroxaban, were determined to be 16.23 and 0.41 nM, respectively. The assay was further validated through the determination of a high Z' factor value of 0.89. Finally, the developed assay was applied to screen a chemical library against two enzymes. Three hit compounds belonging to a class of sulfated polysaccharides were identified and their targets of inhibition action were further evaluated. The results indicated that the dual-target assay by UHPLC-MS/MS analysis could be used as a reliable method for screening anticoagulant agents.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266271, China.
| | - Ruonan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266271, China
| |
Collapse
|
7
|
Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF. Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC. Anal Chem 2017; 89:4889-4896. [DOI: 10.1021/acs.analchem.6b04988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Abraham Ochoa
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Álvarez-Bohórquez
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Eduardo Castillero
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis F. Olguin
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
8
|
Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [DOI: 10.1002/wsbm.1381] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nauman Khalid
- School of Food and Agricultural Sciences; University of Management and Technology; Lahore Pakistan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences; Deakin University; Waurn Ponds Australia
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
| | - Isao Kobayashi
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
- Food Research Institute; NARO; Tsukuba Japan
| | - Mitsutoshi Nakajima
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
- Food Research Institute; NARO; Tsukuba Japan
| |
Collapse
|
9
|
Wingfield J, Wilson ID. Advances in Mass Spectrometry Within Drug Discovery. ACTA ACUST UNITED AC 2016; 21:109-10. [DOI: 10.1177/1087057115623454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Eribol P, Uguz AK, Ulgen KO. Screening applications in drug discovery based on microfluidic technology. BIOMICROFLUIDICS 2016; 10:011502. [PMID: 26865904 PMCID: PMC4733079 DOI: 10.1063/1.4940886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/14/2016] [Indexed: 05/03/2023]
Abstract
Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.
Collapse
Affiliation(s)
- P Eribol
- Department of Chemical Engineering, Boğaziçi University , 34342 Bebek, Istanbul, Turkey
| | - A K Uguz
- Department of Chemical Engineering, Boğaziçi University , 34342 Bebek, Istanbul, Turkey
| | - K O Ulgen
- Department of Chemical Engineering, Boğaziçi University , 34342 Bebek, Istanbul, Turkey
| |
Collapse
|