1
|
Chen Z, Wang J, Yuan J, Wang Z, Tu Z, Crommen J, Luo W, Guo J, Zhang T, Jiang Z. Rapid screening of neuraminidase inhibitors using an at-line nanofractionation platform involving parallel oseltamivir-sensitive/resistant neuraminidase bioassays. J Chromatogr A 2023; 1687:463693. [PMID: 36516530 DOI: 10.1016/j.chroma.2022.463693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.
Collapse
Affiliation(s)
- Zhixu Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jincai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengchao Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, 528000, China
| | - Jialiang Guo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China; School of Stomatology and Medicine, Foshan University, Foshan, 528000, China.
| | - Tingting Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Jian J, Yuan J, Fan Y, Wang J, Zhang T, Kool J, Jiang Z. High-Resolution Bioassay Profiling with Complemented Sensitivity and Resolution for Pancreatic Lipase Inhibitor Screening. Molecules 2022; 27:molecules27206923. [PMID: 36296516 PMCID: PMC9607159 DOI: 10.3390/molecules27206923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
How to rapidly and accurately screen bioactive components from complex natural products remains a major challenge. In this study, a screening platform for pancreatic lipase (PL) inhibitors was established by combining magnetic beads-based ligand fishing and high-resolution bioassay profiling. This platform was well validated using a mixture of standard compounds, i.e., (-)- epigallocatechin gallate (EGCG), luteolin and schisandrin. The dose-effect relationship of high-resolution bioassay profiling was demonstrated by the standard mixture with different concentrations for each compound. The screening of PL inhibitors from green tea extract at the concentrations of 0.2, 0.5 and 1.0 mg/mL by independent high-resolution bioassay profiling was performed. After sample pre-treatment by ligand fishing, green tea extract at the concentration of 0.2 mg/mL was specifically enriched and simplified, and consequently screened through the high-resolution bioassay profiling. As a result, three PL inhibitors, i.e., EGCG, (-)-Gallocatechin gallate (GCG) and (-)-Epicatechin gallate (ECG), were rapidly identified from the complex matrix. The established platform proved to be capable of enriching affinity binders and eliminating nonbinders in sample pre-treatment by ligand fishing, which overcame the technical challenges of high-resolution bioassay profiling in the aspects of sensitivity and resolution. Meanwhile, the high-resolution bioassay profiling possesses the ability of direct bioactive assessment, parallel structural analysis and identification after separation. The established platform allowed more accurate and rapid screening of PL inhibitors, which greatly facilitated natural product-based drug screening.
Collapse
Affiliation(s)
- Jingyi Jian
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yu Fan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tingting Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
3
|
Belanger-Coast MG, Zhang M, Bugay V, Gutierrez RA, Gregory SR, Yu W, Brenner R. Dequalinium chloride is an antagonists of α7 nicotinic acetylcholine receptors. Eur J Pharmacol 2022; 925:175000. [PMID: 35525312 DOI: 10.1016/j.ejphar.2022.175000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Dequalinium chloride has been used primarily as antiseptic compounds, but recently has been investigated for its effects on specific targets, including muscarinic acetylcholine receptors. Here we investigated dequalinium chloride as an antagonist to α7 nicotinic acetylcholine receptors. The pharmacological properties of dequalinium were established using cell lines stably co-transfected with the calcium-permeable human α7 nicotinic acetylcholine receptors and its chaperone NACHO, calcium dye fluorescent measurements or a calcium-sensitive protein reporter, and patch clamp recording of ionic currents. Using calcium dye fluorescence plate reader measurements, we find dequalinium chloride is an antagonist of α7 nicotinic acetylcholine receptors with an IC50 of 672 nM in response to activation with 500 μM acetylcholine chloride and positive allosteric modulator PNU-120596. However, using a membrane-tethered GCAMP7s calcium reporter allowed detection of α7-mediated calcium flux in the absence of PNU-120596. Using this approach revealed an IC50 of 157 nM for dequalinium on 300 μM acetylcholine-evoked currents. Using patch clamp recordings with 300 μM acetylcholine chloride and 10 μM PNU-120596, we find lower concentrations are sufficient to block ionic currents, with IC50 of 120 nM for dequalinium chloride and 54 nM for the related UCL 1684 compound. In summary, we find that dequalinium chloride and UCL1684, which are generally used to block SK-type potassium channels, are also highly effective antagonists of α7 nicotinic acetylcholine receptors. This finding, in combination with previous studies of muscarinic acetylcholine receptors, clearly establishes dequalinium compounds within the class of general anti-cholinergic antagonists.
Collapse
Affiliation(s)
- Matthieu G Belanger-Coast
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mei Zhang
- Sophion Bioscience, Inc, 400 Trade Center Drive, Suite, 6900, Woburn, MA, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Raul A Gutierrez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Summer R Gregory
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Weifeng Yu
- Sophion Bioscience, Inc, 400 Trade Center Drive, Suite, 6900, Woburn, MA, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Liu R, Kool J, Jian J, Wang J, Zhao X, Jiang Z, Zhang T. Rapid Screening α-Glucosidase Inhibitors from Natural Products by At-Line Nanofractionation with Parallel Mass Spectrometry and Bioactivity Assessment. J Chromatogr A 2020; 1635:461740. [PMID: 33271429 DOI: 10.1016/j.chroma.2020.461740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
In this study, a novel at-line nanofractionation screening platform was successfully developed for the rapid screening and identification of α-glucosidase inhibitors from natural products. A time-course bioassay based on high density well-plates was performed in parallel with high resolution mass spectrometry (MS), providing a straightforward and rapid procedure to simultaneously obtain chemical and biological information of active compounds. Through multiple nanofractionations into the same well-plate and comparisons of the orthogonal separation results of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC), the α-glucosidase inhibitors can be accurately identified from co-eluates. The screening platform was comprehensively evaluated and validated, and was applied to the screenings of green tea polyphenols and Ginkgo folium flavonoids. After accurate peak shape and retention time matching between the bioactivity chromatograms and MS chromatograms, ten α-glucosidase inhibitors were successfully screened out and identified. The proposed screening method is rapid, effective and can avoid ignoring low abundant/active inhibitors.
Collapse
Affiliation(s)
- Ruijie Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | | | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Xie C, Slagboom J, Albulescu LO, Bruyneel B, Still KBM, Vonk FJ, Somsen GW, Casewell NR, Kool J. Antivenom Neutralization of Coagulopathic Snake Venom Toxins Assessed by Bioactivity Profiling Using Nanofractionation Analytics. Toxins (Basel) 2020; 12:E53. [PMID: 31963329 PMCID: PMC7020444 DOI: 10.3390/toxins12010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Venomous snakebite is one of the world's most lethal neglected tropical diseases. Animal-derived antivenoms are the only standardized specific therapies currently available for treating snakebite envenoming, but due to venom variation, often this treatment is not effective in counteracting all clinical symptoms caused by the multitude of injected toxins. In this study, the coagulopathic toxicities of venoms from the medically relevant snake species Bothropsasper, Calloselasmarhodostoma, Deinagkistrodonacutus, Daboiarusselii, Echiscarinatus and Echisocellatus were assessed. The venoms were separated by liquid chromatography (LC) followed by nanofractionation and parallel mass spectrometry (MS). A recently developed high-throughput coagulation assay was employed to assess both the pro- and anticoagulant activity of separated venom toxins. The neutralization capacity of antivenoms on separated venom components was assessed and the coagulopathic venom peptides and enzymes that were either neutralized or remained active in the presence of antivenom were identified by correlating bioassay results with the MS data and with off-line generated proteomics data. The results showed that most snake venoms analyzed contained both procoagulants and anticoagulants. Most anticoagulants were identified as phospholipases A2s (PLA2s) and most procoagulants correlated with snake venom metalloproteinases (SVMPs) and serine proteases (SVSPs). This information can be used to better understand antivenom neutralization and can aid in the development of next-generation antivenom treatments.
Collapse
Affiliation(s)
- Chunfang Xie
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Kristina B. M. Still
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
| | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zietek BM, Still KBM, Jaschusch K, Bruyneel B, Ariese F, Brouwer TJF, Luger M, Limburg RJ, Rosier JC, V Iperen DJ, Casewell NR, Somsen GW, Kool J. Bioactivity Profiling of Small-Volume Samples by Nano Liquid Chromatography Coupled to Microarray Bioassaying Using High-Resolution Fractionation. Anal Chem 2019; 91:10458-10466. [PMID: 31373797 PMCID: PMC6706796 DOI: 10.1021/acs.analchem.9b01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
High-throughput
screening platforms for the identification of bioactive
compounds in mixtures have become important tools in the drug discovery
process. Miniaturization of such screening systems may overcome problems
associated with small sample volumes and enhance throughput and sensitivity.
Here we present a new screening platform, coined picofractionation
analytics, which encompasses microarray bioassays and mass spectrometry
(MS) of components from minute amounts of samples after their nano
liquid chromatographic (nanoLC) separation. Herein, nanoLC was coupled
to a low-volume liquid dispenser equipped with pressure-fed solenoid
valves, enabling 50-nL volumes of column effluent (300 nL/min) to
be discretely deposited on a glass slide. The resulting fractions
were dried and subsequently bioassayed by sequential printing of nL-volumes
of reagents on top of the spots. Unwanted evaporation of bioassay
liquids was circumvented by employing mineral oil droplets. A fluorescence
microscope was used for assay readout in kinetic mode. Bioassay data
were correlated to MS data obtained using the same nanoLC conditions
in order to assign bioactives. The platform provides the possibility
of freely choosing a wide diversity of bioassay formats, including
those requiring long incubation times. The new method was compared
to a standard bioassay approach, and its applicability was demonstrated
by screening plasmin inhibitors and fibrinolytic bioactives from mixtures
of standards and snake venoms, revealing active peptides and coagulopathic
proteases.
Collapse
Affiliation(s)
- Barbara M Zietek
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kristina B M Still
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kevin Jaschusch
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Freek Ariese
- LaserLaB , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Tinco J F Brouwer
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Matthijs Luger
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Rob J Limburg
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Joost C Rosier
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Dick J V Iperen
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K.,Centre for Drugs and Diagnostics , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| |
Collapse
|
7
|
Jonker W, de Vries K, Althuisius N, van Iperen D, Janssen E, Ten Broek R, Houtman C, Zwart N, Hamers T, Lamoree MH, Ooms B, Hidding J, Somsen GW, Kool J. Compound Identification Using Liquid Chromatography and High-Resolution Noncontact Fraction Collection with a Solenoid Valve. SLAS Technol 2019; 24:543-555. [PMID: 31096846 PMCID: PMC6873221 DOI: 10.1177/2472630319848768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We describe the development of a high-resolution, noncontact fraction collector
for liquid chromatography (LC) separations, allowing high-resolution
fractionation in high-density well plates. The device is based on a
low-dead-volume solenoid valve operated at 1–30 Hz for accurate collection of
fractions of equal volume. The solenoid valve was implemented in a modified
autosampler resulting in the so-called FractioMate fractionator. The influence
of the solenoid supply voltage on solvent release was determined and the effect
of the frequency, flow rate, and mobile phase composition was studied. For this
purpose, droplet release was visually assessed for a wide range of frequencies
and flow rates, followed by quantitative evaluation of a selection of promising
settings for highly accurate, repeatable, and stable fraction collection. The
potential of the new fraction collector for LC-based bioactivity screening was
demonstrated by fractionating the LC eluent of a mixture of estrogenic and
androgenic compounds, and a surface water sample (blank and spiked with
bioactives) combining mass spectrometric detection and two reporter gene assays
for bioactivity detection of the fractions. Additionally, a mixture of two
compounds was repeatedly LC separated and fractionated to assess the feasibility
of the system for analyte isolation followed by nuclear magnetic resonance
analysis.
Collapse
Affiliation(s)
- Willem Jonker
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Koen de Vries
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels Althuisius
- Electronical Workshop, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dick van Iperen
- Mechanical Workshop, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elwin Janssen
- Division of Organic Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Nick Zwart
- Department Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Timo Hamers
- Department Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marja H Lamoree
- Department Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Govert W Somsen
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zietek BM, Mayar M, Slagboom J, Bruyneel B, Vonk FJ, Somsen GW, Casewell NR, Kool J. Liquid chromatographic nanofractionation with parallel mass spectrometric detection for the screening of plasmin inhibitors and (metallo)proteinases in snake venoms. Anal Bioanal Chem 2018; 410:5751-5763. [PMID: 30090989 PMCID: PMC6096707 DOI: 10.1007/s00216-018-1253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023]
Abstract
To better understand envenoming and to facilitate the development of new therapies for snakebite victims, rapid, sensitive, and robust methods for assessing the toxicity of individual venom proteins are required. Metalloproteinases comprise a major protein family responsible for many aspects of venom-induced haemotoxicity including coagulopathy, one of the most devastating effects of snake envenomation, and is characterized by fibrinogen depletion. Snake venoms are also known to contain anti-fibrinolytic agents with therapeutic potential, which makes them a good source of new plasmin inhibitors. The protease plasmin degrades fibrin clots, and changes in its activity can lead to life-threatening levels of fibrinolysis. Here, we present a methodology for the screening of plasmin inhibitors in snake venoms and the simultaneous assessment of general venom protease activity. Venom is first chromatographically separated followed by column effluent collection onto a 384-well plate using nanofractionation. Via a post-column split, mass spectrometry (MS) analysis of the effluent is performed in parallel. The nanofractionated venoms are exposed to a plasmin bioassay, and the resulting bioassay activity chromatograms are correlated to the MS data. To study observed proteolytic activity of venoms in more detail, venom fractions were exposed to variants of the plasmin bioassay in which the assay mixture was enriched with zinc or calcium ions, or the chelating agents EDTA or 1,10-phenanthroline were added. The plasmin activity screening system was applied to snake venoms and successfully detected compounds exhibiting antiplasmin (anti-fibrinolytic) activities in the venom of Daboia russelii, and metal-dependent proteases in the venom of Crotalus basiliscus. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Barbara M Zietek
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Morwarid Mayar
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Echterbille J, Gilles N, Araóz R, Mourier G, Amar M, Servent D, De Pauw E, Quinton L. Discovery and characterization of EII B, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry. Toxicon 2017; 130:1-10. [PMID: 28238803 DOI: 10.1016/j.toxicon.2017.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Animal toxins are peptides that often bind with remarkable affinity and selectivity to membrane receptors such as nicotinic acetylcholine receptors (nAChRs). The latter are, for example, targeted by α-conotoxins, a family of peptide toxins produced by venomous cone snails. nAChRs are implicated in numerous physiological processes explaining why the design of new pharmacological tools and the discovery of potential innovative drugs targeting these receptor channels appear so important. This work describes a methodology developed to discover new ligands of nAChRs from complex mixtures of peptides. The methodology was set up by the incubation of Torpedo marmorata electrocyte membranes rich in nAChRs with BSA tryptic digests (>100 peptides) doped by small amounts of known nAChRs ligands (α-conotoxins). Peptides that bind to the receptors were purified and analyzed by MALDI-TOF/TOF mass spectrometry which revealed an enrichment of α-conotoxins in membrane-containing fractions. This result exhibits the binding of α-conotoxins to nAChRs. Negative controls were performed to demonstrate the specificity of the binding. The usefulness and the power of the methodology were also investigated for a discovery issue. The workflow was then applied to the screening of Conus ermineus crude venom, aiming at characterizing new nAChRs ligands from this venom, which has not been extensively investigated to date. The methodology validated our experiments by allowing us to bind two α-conotoxins (α-EI and α-EIIA) which have already been described as nAChRs ligands. Moreover, a new conotoxin, never described to date, was also captured, identified and sequenced from this venom. Classical pharmacology tests by radioligand binding using a synthetic homologue of the toxin confirm the activity of the new peptide, called α-EIIB. The Ki value of this peptide for Torpedo nicotinic receptors was measured at 2.2 ± 0.7 nM.
Collapse
Affiliation(s)
- Julien Echterbille
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nicolas Gilles
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Romulo Araóz
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Gilles Mourier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Muriel Amar
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Loic Quinton
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium.
| |
Collapse
|
11
|
Burris KD, Dworetzky SI. JBS Special Issue: Innovative Screening Methodologies to Identify New Compounds for the Treatment of Central Nervous System Disorders. ACTA ACUST UNITED AC 2016; 21:425-6. [PMID: 27206854 DOI: 10.1177/1087057116644231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Kevin D Burris
- Lilly Research Laboratories, Quantitative Biology, Indianapolis, IN, USA
| | | |
Collapse
|
12
|
Otvos RA, van Nierop P, Niessen WMA, Kini RM, Somsen GW, Smit AB, Kool J. Development of an Online Cell-Based Bioactivity Screening Method by Coupling Liquid Chromatography to Flow Cytometry with Parallel Mass Spectrometry. Anal Chem 2016; 88:4825-32. [DOI: 10.1021/acs.analchem.6b00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reka A. Otvos
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pim van Nierop
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilfried M. A. Niessen
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
- hyphen MassSpec, Herenweg 95, 2361
EK Warmond, The Netherlands
| | - R. Manjunatha Kini
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543, Singapore
| | - Govert W. Somsen
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|