1
|
Lee J, Huchthausen J, Schlichting R, Scholz S, Henneberger L, Escher BI. Validation of an SH-SY5Y Cell-Based Acetylcholinesterase Inhibition Assay for Water Quality Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3046-3057. [PMID: 36165561 DOI: 10.1002/etc.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The acetylcholinesterase (AChE) inhibition assay has been frequently applied for environmental monitoring to capture insecticides such as organothiophosphates (OTPs) and carbamates. However, natural organic matter such as dissolved organic carbon (DOC) co-extracted with solid-phase extraction from environmental samples can produce false-negative AChE inhibition in free enzyme-based AChE assays. We evaluated whether disturbance by DOC can be alleviated in a cell-based AChE assay using differentiated human neuroblastoma SH-SY5Y cells. The exposure duration was set at an optimum of 3 h considering the effects of OTPs and carbamates. Because loss to the airspace was expected for the more volatile OTPs (chlorpyrifos, diazinon, and parathion), the chemical loss in this bioassay setup was investigated using solid-phase microextraction followed by chemical analysis. The three OTPs were relatively well retained (loss <34%) during 3 h of exposure in the 384-well plate, but higher losses occurred on prolonged exposure, accompanied by slight cross-contamination of adjacent wells. Inhibition of AChE by paraoxon-ethyl was not altered in the presence of up to 68 mgc /L Aldrich humic acid used as surrogate for DOC. Binary mixtures of paraoxon-ethyl and water extracts showed concentration-additive effects. These experiments confirmed that the matrix in water extracts does not disturb the assay, unlike purified enzyme-based AChE assays. The cell-based AChE assay proved to be suitable for testing water samples with effect concentrations causing 50% inhibition of AChE at relative enrichments of 0.5-10 in river water samples, which were distinctly lower than corresponding cytotoxicity, confirming the high sensitivity of the cell-based AChE inhibition assay and its relevance for water quality monitoring. Environ Toxicol Chem 2022;41:3046-3057. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Environmental Toxicology and Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Tsurim I, Wasserberg G, Ben Natan G, Abramsky Z. Systemic Control of Cutaneous Leishmaniasis Sand-Fly Vectors: Fipronil-Treated Rodent Bait Is Effective in Reducing Phlebotomus papatasi (Diptera: Psychodidae) Female Emergence Rate From Rodent Burrows. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:974-978. [PMID: 33155657 DOI: 10.1093/jme/tjaa201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The strong dependency of some vectors on their host as a source of habitat can be viewed as a weak link in pathogen's transmission cycles using the vertebrate host as a 'Trojan horse' to deliver insecticides directly to the vector-host point of contact (hereafter 'systemic control'). This could, simultaneously, affect the survival of blood-feeding females and coprophagic larvae. Sand-flies, vectors of leishmaniasis worldwide, are often dependent on their bloodmeal host as a source of habitat and may therefore be good candidates for systemic control. In the present study, we field-tested this methodology by baiting Meriones crassus (Sundevall, 1842) (Rodentia:Muridea) with Fipronil-treated food pellets and evaluated its effect on reducing sand-fly emergence rate, in general, and of that of blood-fed females, in particular. We demonstrated 86% reduction in the abundance of female sand-flies that exit burrows of Fipronil-treated jirds, whereas male abundance was unaffected. Furthermore, whereas in control burrows 20% of the females were blood-fed, in treatment burrows no blood-fed females were detected. Sand-fly abundance outside the burrows was not affected by burrow treatment. This highlights the focal specificity of this method: affecting female sand-flies that feed on the reservoir host. This should result in the reduction of the pathogen transmission rate in the vicinity of the treated area by reducing the prevalence of leishmania-infected sand-fly females. These results hold promise for the potential of the systemic control approach in this system. Our next-step goal is to test this methodology at a large-scale cutaneous leishmaniasis control program.
Collapse
Affiliation(s)
- Ido Tsurim
- Department of Life Sciences, Achva Academic College, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gideon Wasserberg
- Biology Department, University of North Carolina at Greensboro, Greensboro, NC
| | - Gil Ben Natan
- Department of Life Sciences, Achva Academic College, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvika Abramsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Monoclonal antibodies to fetal bovine serum acetylcholinesterase distinguish between acetylcholinesterases from ruminant and non-ruminant species. Chem Biol Interact 2020; 330:109225. [PMID: 32795450 DOI: 10.1016/j.cbi.2020.109225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Two types of cholinesterases (ChEs) are present in mammalian blood and tissues: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE regulates neurotransmission by hydrolyzing acetylcholine at the postsynaptic membranes and neuromuscular junctions, BChE in plasma has been suggested to be involved in detoxifying toxic compounds. This study was undertaken to establish the identity of circulating ChE activity in plasmas from domestic animals (bovine, ovine, caprine, porcine and equine) by assessing sensitivity to AChE-specific inhibitors (BW284c51 and edrophonium) and BChE-specific inhibitors (dibucaine, ethopropazine and Iso-OMPA) as well as binding to anti-FBS AChE monoclonal antibodies (MAbs). Based on the inhibition of ChE activity by ChE-specific inhibitors, it was determined that bovine, ovine and caprine plasma predominantly contain AChE, while porcine and equine plasma contain BChE. Three of the anti-FBS AChE MAbs, 4E5, 5E8 and 6H9, inhibited 85-98% of enzyme activity in bovine, ovine and caprine plasma, confirming that the esterase in these plasmas was AChE. These MAbs did not bind to purified recombinant human or mouse AChE, demonstrating that these MAbs were specific for AChEs from ruminant species. These MAbs did not inhibit the activity of purified human BChE, or ChE activity in porcine and equine plasma, confirming that the ChE in these plasmas was BChE. Taken together, these results demonstrate that anti-FBS AChE MAbs can serve as useful tools for distinguishing between AChEs from ruminant and non-ruminant species and BChEs.
Collapse
|
4
|
Characterization of butyrylcholinesterase in bovine serum. Chem Biol Interact 2017; 266:17-27. [PMID: 28189703 DOI: 10.1016/j.cbi.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 μg/mL in FBS, and 0.03 μg/mL in adult bovine serum, values lower than the 4 μg/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Collapse
|
5
|
El Ouedghiri K, Badrane N, Maniar S, El-Akhal F, Ouazzani Chahdi F, El Ouali Lalami A. Evaluation of chronic intoxication by organophosphate insecticides among hygiene workers in the city of Fez, Morocco. ARCH MAL PROF ENVIRO 2016. [DOI: 10.1016/j.admp.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Bitzinger DI, Gruber M, Tümmler S, Michels B, Bundscherer A, Hopf S, Trabold B, Graf BM, Zausig YA. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 2016; 109:1-6. [DOI: 10.1016/j.neuropharm.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 11/29/2022]
|
7
|
Acute toxicity of veterinary and agricultural formulations of organophosphates dichlorvos and diazinon in chicks. Arh Hig Rada Toksikol 2012; 62:317-23. [PMID: 22202465 DOI: 10.2478/10004-1254-62-2011-2139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formulation components of organophosphate insecticidal preparations might affect their toxic action in animals. The objective of this study was to examine and compare the acute toxicity and cholinesterase inhibition in seven to 14-day-old chicks dosed orally with dichlorvos and diazinon in standard veterinary and agricultural formulations. The acute (24 h) oral median lethal doses (LD50) of the formulations were determined using the up-and-down method. Respective LD50 of dichlorvos of the veterinary and agricultural formulations in chicks were 11.1 mg kg(-1) and 6.51 mg kg(-1) and those of diazinon 6.4 mg kg(-1) and 6.7 mg kg(-1). Plasma and brain cholinesterase activities were measured by electrometry after in vivo and in vitro exposure to organophosphates. The chicks showed signs of cholinergic toxicosis within one hour of dosing. Dichlorvos (8 mg kg(-1)) and diazinon (4 mg kg(-1)) in the veterinary and agricultural formulation significantly reduced both plasma and brain cholinesterase activities in the chicks. The veterinary formulation of dichlorvos reduced plasma ChE by 60% and agricultural by 40% and brain ChE by 93% and 87%, respectively. In contrast, ChE inhibition by diazinon in the agricultural formulation of diazinon was stronger than by the veterinary formulation; 72% vs. 64% in plasma and 97% vs. 80% in the brain, respectively. The highest in vitro inhibitions were observed with dichlorvos in the agricultural formulation (50%) in the brain samples and with diazinon in the agricultural formulation (52%) in the plasma samples. While they exist, differences between formulations cannot be taken as a rule and further investigations should inventory the toxicity of standard veterinary and agricultural organophosphate formulations in addition to the known data for pure forms.
Collapse
|
8
|
Plasma and whole brain cholinesterase activities in three wild bird species in Mosul, IRAQ: In vitro inhibition by insecticides. Interdiscip Toxicol 2011; 4:144-8. [PMID: 22058655 PMCID: PMC3203916 DOI: 10.2478/v10102-011-0022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022] Open
Abstract
Plasma and brain cholinesterase activities were determined in three wild bird species to assess their exposure to organophosphate and carbamate insecticides which are used in agriculture and public health. In the present study, we used an electrometric method for measurement of cholinesterase activities in the plasma and whole brain of three indigenous wild birds commonly found in northern Iraq. The birds used were apparently healthy adults of both sexes (8 birds/species, comprising 3-5 from each sex) of quail (Coturnix coturnix), collard dove (Streptopelia decaocto) and rock dove (Columba livia gaddi), which were captured in Mosul, Iraq. The mean respective cholinesterase activities (Δ pH/30 minutes) in the plasma and whole brain of the birds were as follows: quail (0.96 and 0.29), collard dove (0.97and 0.82) and rock dove (1.44 and 1.42). We examined the potential susceptibility of the plasma or whole brain cholinesterases to inhibition by selected insecticides. The technique of in vitro cholinesterase inhibition for 10 minutes by the organophosphate insecticides dichlorvos, malathion and monocrotophos (0.5 and 1.0 µM) and the carbamate insecticide carbaryl (5 and10 µM) in the enzyme reaction mixtures showed significant inhibition of plasma and whole brain cholinesterase activities to various extents. The data further support and add to the reported cholinesterase activities determined electrometrically in wild birds in northern Iraq. The plasma and whole brain cholinesterases of the birds are highly susceptible to inhibition by organophosphate and carbamate insecticides as determined by the described electrometric method, and the results further suggest the usefulness of the method in biomonitoring wild bird cholinesterases.
Collapse
|
9
|
Abstract
NMD is an important cause of morbidity in horses. Signs of dysfunction could be variable depending on the specific area affected. NM disease can go unrecognized if a thorough evaluation is not performed in diseased horses. Electrodiagnostic testing is an area that has the potential to document and improve our understanding of NM disease yet is uncommonly performed. Keeping an open and observant mind will enhance our ability to search and find answers.
Collapse
|
10
|
Lehner AF, Samsing F, Rumbeiha WK. Organophosphate ester flame retardant-induced acute intoxications in dogs. J Med Toxicol 2010; 6:448-58. [PMID: 20717764 PMCID: PMC3550468 DOI: 10.1007/s13181-010-0105-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Flame retardants have wide industrial applications and are incorporated into articles found in automobiles and home environments, including seat cushions. These compounds differ widely chemically and in their toxic potential. We report here two cases involving dogs following ingestion of car seat cushions impregnated with organophosphate ester fire retardants. CASE REPORTS Two case reports are presented. Two adult American Pit Bull dogs were presented at an emergency clinic with acute signs of central nervous system excitation including seizures. The most severely affected dog died 15 min after presentation, while the less affected dog fully recovered following treatment. In the second case, both a German Shepherd and a Rottweiler were found dead in the morning after they were left in a car overnight. A comprehensive toxicological analysis of samples from both cases revealed the presence of significant amounts (>2 ppm) of tris(2-chloroethyl)phosphate (TCEP) in stomach contents. This compound is a known inducer of epileptic seizures. Some other structurally related organophosphate ester compounds were found, and their role in the acute intoxications reported here is not known and remains to be determined. CONCLUSION This is the first report linking acute deaths in dogs to the ingestion of car seat cushions found to contain large amounts of TCEP, an organophosphate ester compound. It is highly likely that this compound caused death through its known seizure-inducing activity.
Collapse
Affiliation(s)
- Andreas F Lehner
- Toxicology Section, Diagnostic Center for Population and Animal Health (DCPAH), Michigan State University, 4125 Beaumont Rd, East Lansing, MI 48910, USA.
| | | | | |
Collapse
|
11
|
Affiliation(s)
- C J Myers
- Department of Large Animal Internal Medicine, Veterinary Medical Teaching Hospital, University of California, Davis, California, 95616, USA
| | | | | | | | | |
Collapse
|
12
|
A. Zidan NEH. Evaluation of the Reproductive Toxicity of Chlorpyrifos Methyl, Diazinon and Profenofos Pesticides in Male Rats. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2009.51.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Karanth S, Holbrook T, MacAllister C, Pope CN. Selective inhibition of butyrylcholinesterase in vivo in horses by the feed-through larvacide Equitrol®. Regul Toxicol Pharmacol 2008; 50:200-5. [DOI: 10.1016/j.yrtph.2007.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/12/2007] [Accepted: 11/16/2007] [Indexed: 11/29/2022]
|
14
|
Berger J, Valdez S, Puschner B, Leutenegger CM, Gardner IA, Madigan JE. Effects of oral tetrachlorvinphos fly control (Equitrol®) administration in horses: Physiological and behavioural findings. Vet Res Commun 2007; 32:75-92. [PMID: 17522960 DOI: 10.1007/s11259-007-9004-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Highly reactive horses may pose risks to humans involved in equestrian activities. Among the factors that may affect horses' reactivity to external stimuli are pesticides used for fly control in equine facilities. The organophosphorus (OP) insecticide tetrachlorvinphos (TCVP) is used as a feed-through larvicide to prevent completion of the fly larval life cycle in horse manure. TCVP exerts its effect by inhibiting the enzyme cholinesterase (ChE) leading to the accumulation of the neurotransmitter acetylcholine (AChE) in synapses of the central and peripheral nervous systems. The aim of the present study was to investigate alterations of whole-blood ChE levels associated with feeding a commercially available product (Equitrol, Farnam Companies, Inc.) to horses for fly control. A second aim was to report neurological, physiological and behavioural findings in addition to profiles of selected immune markers (IFN-gamma, IL-12p40 and COX-2) and serum thyroid hormones during and after a 30-day treatment period of TCVP feeding. The results indicated significant decreases in whole-blood ChE activity and concomitant behavioural alterations, manifested as increased reactivity and decreased controllability in treated horses. No changes were detected in physiological or neurological parameters, immune markers or thyroid hormones in treated (n=6) or control (n=4) horses during the course of the study.
Collapse
Affiliation(s)
- J Berger
- Behaviour Service, Veterinary Medical Teaching Hospital, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|