1
|
Laumer IB, Rahman A, Rahmaeti T, Azhari U, Hermansyah, Atmoko SSU, Schuppli C. Active self-treatment of a facial wound with a biologically active plant by a male Sumatran orangutan. Sci Rep 2024; 14:8932. [PMID: 38698007 PMCID: PMC11066025 DOI: 10.1038/s41598-024-58988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Although self-medication in non-human animals is often difficult to document systematically due to the difficulty of predicting its occurrence, there is widespread evidence of such behaviors as whole leaf swallowing, bitter pith chewing, and fur rubbing in African great apes, orangutans, white handed gibbons, and several other species of monkeys in Africa, Central and South America and Madagascar. To the best of our knowledge, there is only one report of active wound treatment in non-human animals, namely in chimpanzees. We observed a male Sumatran orangutan (Pongo abelii) who sustained a facial wound. Three days after the injury he selectively ripped off leaves of a liana with the common name Akar Kuning (Fibraurea tinctoria), chewed on them, and then repeatedly applied the resulting juice onto the facial wound. As a last step, he fully covered the wound with the chewed leaves. Found in tropical forests of Southeast Asia, this and related liana species are known for their analgesic, antipyretic, and diuretic effects and are used in traditional medicine to treat various diseases, such as dysentery, diabetes, and malaria. Previous analyses of plant chemical compounds show the presence of furanoditerpenoids and protoberberine alkaloids, which are known to have antibacterial, anti-inflammatory, anti-fungal, antioxidant, and other biological activities of relevance to wound healing. This possibly innovative behavior presents the first systematically documented case of active wound treatment with a plant species know to contain biologically active substances by a wild animal and provides new insights into the origins of human wound care.
Collapse
Affiliation(s)
- Isabelle B Laumer
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Konstanz, Germany.
| | - Arif Rahman
- Department of Biology, Graduate Program, Faculty of Biology and Agriculture, Universitas Nasional, Jakarta, 12520, Indonesia
| | - Tri Rahmaeti
- Department of Biology, Graduate Program, Faculty of Biology and Agriculture, Universitas Nasional, Jakarta, 12520, Indonesia
| | | | - Hermansyah
- Yayasan Ekosistem Lestari (YEL), Medan, Indonesia
| | | | - Caroline Schuppli
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Konstanz, Germany
| |
Collapse
|
2
|
Alamneh YA, Antonic V, Garry B, Pucci MJ, Abu-Taleb R, Shearer JP, Demons ST, Getnet D, Swierczewski BE, Lister T, Zurawski DV. Minocycline and the SPR741 Adjuvant Are an Efficacious Antibacterial Combination for Acinetobacter baumannii Infections. Antibiotics (Basel) 2022; 11:antibiotics11091251. [PMID: 36140032 PMCID: PMC9495173 DOI: 10.3390/antibiotics11091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance, when it comes to bacterial infections, is not a problem that is going to disappear anytime soon. With the lack of larger investment in novel antibiotic research and the ever-growing increase of resistant isolates amongst the ESKAPEE pathogens (Enterobacter cloacae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus sp., and Escherichia coli), it is inevitable that more and more infections caused by extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains will arise. One strategy to counteract the growing threat is to use antibiotic adjuvants, a drug class that on its own lacks significant antibiotic activity, but when mixed with another antibiotic, can potentiate increased killing of bacteria. Antibiotic adjuvants have various mechanisms of action, but polymyxins and polymyxin-like molecules can disrupt the Gram-negative outer membrane and allow other drugs better penetration into the bacterial periplasm and cytoplasm. Previously, we showed that SPR741 had this adjuvant effect with regard to rifampin; however, rifampin is often not used clinically because of easily acquired resistance. To find additional, appropriate clinical partners for SPR741 with respect to pulmonary and wound infections, we investigated tetracyclines and found a previously undocumented synergy with minocycline in vitro and in vivo in murine models of infection.
Collapse
Affiliation(s)
- Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jonathan P. Shearer
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Samandra T. Demons
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brett E. Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Troy Lister
- Spero Therapeutics, Inc., Cambridge, MA 02139, USA
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-301-319-3110; Fax: +1-301-319-9801
| |
Collapse
|
3
|
Mougeot JLC, Beckman MF, Bahrani Mougeot F, Horton JM. Cutaneous Microbiome Profiles Following Chlorhexidine Treatment in a 72-Hour Daily Follow-Up Paired Design: a Pilot Study. Microbiol Spectr 2022; 10:e0175321. [PMID: 35467392 PMCID: PMC9248901 DOI: 10.1128/spectrum.01753-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Abstract
Venous catheter-related bloodstream infections represent a significant problem in the United States. Our objective was to determine daily changes in skin microbiome profiles up to 72h postchlorhexidine treatment. Left and right forearm skin swab samples were obtained from 10 healthy volunteers over 72h at 24h intervals. Dorsal surface of left arm was treated with chlorohexidine gluconate (CHG) at initial time point (T = 0), while the right arm remained untreated (control). Swab samples were obtained shortly before (T = 0) and after CHG treatment (T = 24-48-72h). Bacterial DNA extraction, 16S rRNA gene V1-V3 sequencing and taxonomic annotation were performed using ZymoBIOMICS pipeline. PERMANOVA, linear discriminant and bacterial interaction network analyses were performed. A total of 13 total phyla, 273 genera, and 950 total species were detected across all time points, CHG-treated or CHG-untreated. Most abundant species included Cutibacterium acnes, Staphylococcus epidermidis, and Rothia Mucilaginosa. Low biomass-related inconsistent taxa detection was observed. PERMANOVA suggested a marginal difference between CHG-treated and CHG-untreated microbiome profiles (Genera: P(perm) = 0.0531; Species: P(perm) = 0.0450). Bacterial interaction network guided PERMANOVA analyses detected a microbiome change over time, suggesting a consistent CHG treatment-specific change. LEfSe identified Finegoldia magna, Bacillus pumilus, Bacillus thermoamylovorans as the only distinctive species. These species were more abundant and/or present post-CHG treatment in the CHG-treated group. These findings suggest that the skin microbiome was not significantly different 24, 48, or 72h after CHG treatment. Previous culture-based studies have found similar results after 24h. Future studies will be needed to determine the mechanisms of bacterial regrowth after CHG treatment. IMPORTANCE Annually, over 80,000 central line infections occur in the United States. Understanding the pathogenesis of these infections is crucial. Chlorhexidine is the most commonly used skin preparation before line placement. We hypothesized that the use of chlorhexidine and dressings will alter the normal arm skin microbiome over a period of 72h. We used 16S-rRNA gene next generation sequencing (NGS) to determine the forearm skin microbiome of volunteers. The left arm was swabbed with chlorhexidine and the right arm served as control. The skin microbiome returned to normal after 24h. Our NGS results confirm findings of two previous culture-based studies. Relative abundance of Bacillus spp. in the chlorhexidine-treated samples was increased, consistent with one previous study. Based on the results of this pilot study, we will need to measure viable bacteria during a 24h time course following chlorhexidine treatment to understand the source of skin microbiome replenishment.
Collapse
Affiliation(s)
| | | | | | - James M. Horton
- Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
4
|
Toll-Like Receptors 2 and 4 Modulate Pulmonary Inflammation and Host Factors Mediated by Outer Membrane Vesicles Derived from Acinetobacter baumannii. Infect Immun 2019; 87:IAI.00243-19. [PMID: 31262980 DOI: 10.1128/iai.00243-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Pneumonia due to Gram-negative bacteria is associated with high mortality. Acinetobacter baumannii is a Gram-negative bacterium that is associated with hospital-acquired and ventilator-associated pneumonia. Bacteria have been described to release outer membrane vesicles (OMVs) that are capable of mediating systemic inflammation. The mechanism by which A. baumannii OMVs mediate inflammation is not fully defined. We sought to investigate the roles that Toll-like receptors (TLRs) play in A. baumannii OMV-mediated pulmonary inflammation. We isolated OMVs from A. baumannii cultures and intranasally introduced the OMVs into mice. Intranasal introduction of A. baumannii OMVs mediated pulmonary inflammation, which is associated with neutrophil recruitment and weight loss. In addition, A. baumannii OMVs increased the release of several chemokines and cytokines in the mouse lungs. The proinflammatory responses were partially inhibited in TLR2- and TLR4-deficient mice compared to those of wild-type mice. This study highlights the important roles of TLRs in A. baumannii OMV-induced pulmonary inflammation in vivo.
Collapse
|
5
|
SPR741, an Antibiotic Adjuvant, Potentiates the In Vitro and In Vivo Activity of Rifampin against Clinically Relevant Extensively Drug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61:AAC.01239-17. [PMID: 28947471 PMCID: PMC5700309 DOI: 10.1128/aac.01239-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter baumannii is responsible for 10% of all nosocomial infections and has >50% mortality rates when causing ventilator-associated pneumonia. In this proof-of-concept study, we evaluated SPR741, an antibiotic adjuvant that permeabilizes the Gram-negative membrane, in combination with rifampin against AB5075, an extensively drug-resistant (XDR) A. baumannii strain. In standard in vitro assays and in a murine pulmonary model, we found that this drug combination can significantly reduce bacterial burden and promote animal survival despite an aggressive infection.
Collapse
|