1
|
Thibodeau SÈ, Labbé EA, Walsh-Wilkinson É, Morin-Grandmont A, Arsenault M, Couet J. Plasma and Myocardial miRNomes Similarities and Differences during Cardiac Remodelling and Reverse Remodelling in a Murine Model of Heart Failure with Preserved Ejection Fraction. Biomolecules 2024; 14:892. [PMID: 39199280 PMCID: PMC11351983 DOI: 10.3390/biom14080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterised by multiple risk factors touching various organs outside the heart. Using a murine HFpEF model, we studied cardiac reverse remodelling (RR) after stopping the causing metabolic-hypertensive stress (MHS; Angiotensin II [AngII] and a high-fat diet [HFD]) after 28 days and introducing voluntary exercise (VE) for four more weeks. We measured the effects of MHS and RR on the plasma and myocardial microRNA (miR) profile (miRNome) to characterise better cardiac and non-cardiac responses to HFpEF-inducing risk factors and their reversibility. AngII alone, the HFD or the MHS caused cardiac hypertrophy (CH), left ventricular (LV) concentric remodelling and left atrial enlargement in females. Only AngII and the MHS, but not HFD, did in males. After RR, CH, LV concentric remodelling and atrial enlargement were normalised. Among the 25 most abundant circulating miRs, 10 were modulated by MHS. Plasma miRNomes from AngII, HFD or MHS mice shared 31 common significantly modulated miRs (24 upregulated and 7 downregulated), suggesting that the response of organs producing the bulk of those circulating miRs was similar even for seemingly different stress. In the LV, 19 out of 25 most expressed miRs were modulated. RR restored normality for the plasma miRNome but not for the LV miRNome, which remained mostly unchanged. Our results suggest that abnormalities persist in the myocardium of the HFpEF mice and that the normalisation of circulatory markers may be falsely reassuring after recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacques Couet
- Groupe de Recherche sur les Valvulopathies, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 4G5, Canada; (S.-È.T.); (E.-A.L.); (É.W.-W.); (A.M.-G.); (M.A.)
| |
Collapse
|
2
|
Bartiromo M, Nardolillo M, Ferrara S, Russo G, Miraglia Del Giudice E, Di Sessa A. The challenging role of micro-RNAs in non-alcoholic fatty liver disease in children with obesity: is it time for a new era? Expert Rev Gastroenterol Hepatol 2023; 17:817-824. [PMID: 37497846 DOI: 10.1080/17474124.2023.2242245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION As the pediatric obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in childhood. Pediatric NAFLD pathophysiology is tangled and still unclear, but insulin resistance (IR), genetics, epigenetics, oxidative stress, and inflammation act as key players. Due to the increased cardiometabolic risk of these patients, several biomarkers have been proposed for early NAFLD identification, but their clinical utility is poor. Recently, hepatic dysregulation of microRNAs (miRNAs) has been linked to metabolic dysfunction, which in turn implied in NAFLD development. Evidence on the intriguing role of miRNAs in NAFLD pathogenesis has emerging especially in at-risk children such as those with obesity. However, pediatric evidence supporting their potential use as early noninvasive NAFLD tools is still limited but promising. AREAS COVERED We provided an overview on the emerging role of miRNAs in pediatric NAFLD by addressing some issues regarding their pathophysiological link with the metabolic milieu and their role as reliable NAFLD markers in children with obesity. EXPERT OPINION Strong evidence supports a potential role of miRNAs as early biomarkers of NAFLD in children with obesity. They might represent a valid diagnostic and targeted therapeutic tool due to its close pathogenic link with the metabolic milieu.
Collapse
Affiliation(s)
- Mario Bartiromo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Nardolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Ferrara
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Russo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Sun Y, Shen Y, Liang X, Zheng H, Zhang Y. MicroRNAs as Biomarkers and Therapeutic Targets for Nonalcoholic Fatty Liver Disease: A Narrative Review. Clin Ther 2023; 45:234-247. [PMID: 36841739 DOI: 10.1016/j.clinthera.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/27/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. However, biomarkers for NAFLD diagnosis and liver-specific drugs for treatment are lacking. This article reviews the possibility of circulating miRNAs in the diagnosis and treatment of NAFLD diseases and focuses on several well-studied miRNAs to provide preclinical data for subsequent related studies. METHODS Related articles were identified through searches of the PubMed database for literature published from 2010 to December 2022. Search terms included NAFLD, microRNA, biomarker, diagnosis, and therapy. FINDINGS Current research data indicate that some key circulating miRNAs may be used as diagnostic biomarkers of NAFLD and the combination of several miRNAs improves diagnostic performance. In addition, some preclinical trials using cell and mouse models provide a basis for some miRNAs as potential therapeutic targets. IMPLICATIONS Current evidence suggests that circulating miRNAs are potential noninvasive biomarkers for clinical diagnosis of NAFLD, which needs to be validated in more heterogeneous and larger cohorts. In addition, several miRNAs regulate multiple downstream pathways related to the pathophysiology of NAFLD in a cell- and tissue-specific manner, making them attractive drug therapeutic targets for NAFLD. However, more preclinical and clinical trials are needed for these miRNAs to become therapeutic targets of NAFLD.
Collapse
Affiliation(s)
- Yu Sun
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China.
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China
| | - Xiurui Liang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huilin Zheng
- School of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Yitong Zhang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China
| |
Collapse
|
4
|
You Y, Liu C, Liu T, Tian M, Wu N, Yu Z, Zhao F, Qi J, Zhu Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic Biol Med 2022; 193:808-819. [PMID: 36336231 DOI: 10.1016/j.freeradbiomed.2022.10.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a leading cause of chronic liver disease worldwide with limited therapeutic options. The role of fibronectin type III domain-containing protein 3B (FNDC3B), an important regulator of metabolism, in ALD, and the underlying mechanism as well as its potential implication in ALD therapeutic strategies remain unknown. METHODS Hepatocyte-specific FNDC3B knockdown or control C57BL/6 N mice received a Lieber-DeCarli diet for four weeks, followed by oral gavage (chronic-binge). Primary mouse hepatocytes and cell lines were used for in vitro studies. Liver injury, hepatic steatosis, and lipid peroxidation were assessed. RESULTS In cultured cells and mouse livers, alcohol exposure increased FNDC3B expression. Hepatocyte-specific FNDC3B deletion aggravated alcohol-induced liver steatosis via AMP-activated protein kinase (AMPK) inhibition. In vitro, FNDC3B expression was negatively regulated by miR-192-5p. Furthermore, FNDC3B deletion significantly exacerbated ethanol-mediated lipid peroxidation. The RNA sequence assay revealed a connection between FNDC3B and ferroptosis, which was verified by the administration of the ferroptosis inhibitor ferrostatin-1 (Fer-1). Additionally, FNDC3B inhibition-mediated AMPK inactivation downregulated transferrin expression, which was associated with marked iron overload and ferroptosis. CONCLUSIONS This study elucidated the critical role of FNDC3B in preventing hepatic steatosis and ferroptosis in response to chronic alcohol consumption. Our findings indicate that FNDC3B is a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Yajing You
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhen Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fenglin Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
5
|
Liver Steatosis: A Marker of Metabolic Risk in Children. Int J Mol Sci 2022; 23:ijms23094822. [PMID: 35563210 PMCID: PMC9100068 DOI: 10.3390/ijms23094822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is one of the greatest health challenges affecting children of all ages and ethnicities. Almost 19% of children and adolescents worldwide are overweight or obese, with an upward trend in the last decades. These reports imply an increased risk of fat accumulation in hepatic cells leading to a series of histological hepatic damages gathered under the acronym NAFLD (Non-Alcoholic Fatty Liver Disease). Due to the complex dynamics underlying this condition, it has been recently renamed as 'Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)', supporting the hypothesis that hepatic steatosis is a key component of the large group of clinical and laboratory abnormalities of Metabolic Syndrome (MetS). This review aims to share the latest scientific knowledge on MAFLD in children in an attempt to offer novel insights into the complex dynamics underlying this condition, focusing on the novel molecular aspects. Although there is still no treatment with a proven efficacy for this condition, starting from the molecular basis of the disease, MAFLD's therapeutic landscape is rapidly expanding, and different medications seem to act as modifiers of liver steatosis, inflammation, and fibrosis.
Collapse
|
6
|
Chiba K. [In vivo integrated safety assessment of the cardiovascular system in drug development]. Nihon Yakurigaku Zasshi 2022; 157:47-52. [PMID: 34980813 DOI: 10.1254/fpj.21075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Drug-induced cardiotoxicity still remains a major cause of concern, and non-clinical integrated risk assessments from both functional and structural alterations in the cardiovascular system are strongly required in the creation of drugs with superior safety profiles. Although systemic blood pressure, heart rate, and electrocardiogram are the main items in safety pharmacology studies, direct cardiac function assessments such as cardiac output and ventricular contractility, mentioned in ICH S7A guideline, are also desirable. General toxicology studies are important to detect structural changes through clinical pathology and histopathological examination, and translational biomarkers and metabolomics analysis with high extrapolation to humans also provide useful insights. In this paper, we will introduce our basic research to investigate the cardiac effects of milrinone, a cAMP phosphodiesterase III inhibitor in cynomolgus monkeys, and share the importance of comprehensive risk assessment in non-clinical in vivo studies.
Collapse
|
7
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
8
|
Oda S, Yokoi T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab Pharmacokinet 2021; 37:100372. [PMID: 33461055 DOI: 10.1016/j.dmpk.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs with 18-25 nucleotides. They play key regulatory roles in versatile biological process including development and apoptosis, and in disease pathogenesis, for example carcinogenesis, by negatively regulating gene expression. miRNAs often exhibit characteristics suitable for biomarkers such as tissue-specific expression patterns, high stability in serum/plasma, and change in abundance in circulation immediately after toxic injury. Since the discovery of circulating miRNAs in extracellular biological fluids in 2008, there have been many reports on the use of miRNAs as biomarkers for various diseases including cancer and organ injury in humans and experimental animals. In this review article, we have summarized the utility and limitation of circulating miRNAs as safety/toxicology biomarkers for specific tissue injuries including liver, skeletal muscle, heart, retina, and pancreas, by comparing them with conventional protein biomarkers. We have also covered the discovery of miRNAs in serum/plasma and their stability, the knowledge of which is essential for understanding the kinetics of miRNA biomarkers. Since numerous studies have reported the use of these circulating miRNAs as safety biomarkers with high sensitivity and specificity, we believe that circulating miRNAs can promote pre-clinical drug development and improve the monitoring of tissue injuries in clinical pharmacotherapy.
Collapse
Affiliation(s)
- Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX, Zeng J, Zhou H, Fan JG. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020; 72:454-469. [PMID: 31782176 PMCID: PMC10465073 DOI: 10.1002/hep.31050] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Hepatic macrophages can be activated by many factors such as gut-derived bacterial components and factors released from damaged hepatocytes. Macrophage polarization toward a proinflammatory phenotype (M1) represents an important event in the disease progression of nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms remain incompletely understood. Exosomes have been identified as important mediators for cell-cell communication by transferring various biological components such as microRNAs (miRs), proteins, and lipids. The role of exosomes in crosstalk between hepatocytes and macrophages in disease progression of NAFLD is yet to be explored. APPROACH AND RESULTS In the present study, we reported that lipotoxic injury-induced release of hepatocyte exosomes enriched with miR-192-5p played a critical role in the activation of M1 macrophages and hepatic inflammation. Serum miR-192-5p levels in patients with NAFLD positively correlated with hepatic inflammatory activity score and disease progression. Similarly, the serum miR-192-5p level and the number of M1 macrophages, as well as the expression levels of the hepatic proinflammatory mediators, were correlated with disease progression in high-fat high-cholesterol diet-fed rat models. Lipotoxic hepatocytes released more miR-192-5p-enriched exosomes than controls, which induced M1 macrophage (cluster of differentiation 11b-positive [CD11b+ ]/CD86+ ) activation and increase of inducible nitric oxide synthase, interleukin 6, and tumor necrosis factor alpha expression. Furthermore, hepatocyte-derived exosomal miR-192-5p inhibited the protein expression of the rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), which further inhibited the phosphorylation levels of Akt and forkhead box transcription factor O1 (FoxO1) and resulted in activation of FoxO1 and subsequent induction of the inflammatory response. CONCLUSIONS Hepatocyte-derived exosomal miR-192-5p plays a critical role in the activation of proinflammatory macrophages and disease progression of NAFLD through modulating Rictor/Akt/FoxO1 signaling. Serum exosomal miR-192-5p represents a potential noninvasive biomarker and therapeutic target for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Xiao-Lin Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai-Xia Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Feng-Zhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ze-Hua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University; McGuire VA Medical Center, Richmond, VA, 23298, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Shanghai 200092, China
| |
Collapse
|
11
|
Chiba K, Ishizaka T, Yoshimatsu Y, Mikamoto K, Maeda Y, Iguchi T, Shirai M, Yamaguchi T, Goto K, Sakurai K, Tamai S, Kataoka H, Hasegawa M, Mori K. Comprehensive analysis of cardiac function, blood biomarkers and histopathology for milrinone-induced cardiotoxicity in cynomolgus monkeys. J Pharmacol Toxicol Methods 2020; 103:106870. [PMID: 32353509 DOI: 10.1016/j.vascn.2020.106870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The objective of this study was to elucidate the underlying cardiotoxic mechanism of milrinone, a cAMP phosphodiesterase 3 inhibitor, by evaluating cardiac functions, blood biomarkers including cardiac troponin I (cTnI), microRNAs (miR-1, miR-133a and miR-499a) and various endogenous metabolites, and histopathology in conscious cynomolgus monkeys. Milrinone at doses of 0, 3 and 30 mg/kg were orally administered to monkeys (n = 3-4/group), and the endpoints were evaluated 1 to 24 h post-dosing. Milrinone caused myocardial injuries characterized by myocardial degeneration/necrosis, cell infiltration and hemorrhage 24 h after drug administration. Cardiac functional analysis revealed that milrinone dose-dependently increased the maximum upstroke velocity of the left ventricular pressure and heart rate, and decreased the QA interval and systemic blood pressure 1-4 h post-dosing, being associated with pharmacological action of the drug. In the blood biomarker analysis, only plasma cTnI was dose-dependently increased 4-7 h after drug administration, suggesting that cTnI is the most sensitive biomarker for early detection of milrinone-induced myocardial injuries. In the metabolomics analysis, high dose of milrinone induced transient changes in lipid metabolism, amino acid utilization and oxidative stress, together with the pharmacological action of increased cAMP and lipolysis 1 h post-dosing before the myocardial injuries were manifested by increased cTnI levels. Taken together, milrinone showed acute positive inotropic and multiple metabolic changes including excessive pharmacological actions, resulting in myocardial injuries. Furthermore, a comprehensive analysis of cardiac functions, blood biomarkers and histopathology can provide more appropriate information for overall assessment of preclinical cardiovascular safety.
Collapse
Affiliation(s)
- Katsuyoshi Chiba
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Tomomichi Ishizaka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Yoshimatsu
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kei Mikamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Maeda
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Shirai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takashi Yamaguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiroko Kataoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Miki Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
12
|
Iguchi T, Niino N, Tamai S, Sakurai K, Mori K. Absolute Quantification of Plasma MicroRNA Levels in Cynomolgus Monkeys, Using Quantitative Real-time Reverse Transcription PCR. J Vis Exp 2018. [PMID: 29553521 DOI: 10.3791/56850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RT-qPCR is one of the most common methods to assess individual target miRNAs. MiRNAs levels are generally measured relative to a reference sample. This approach is appropriate for examining physiological changes in target gene expression levels. However, absolute quantification using better statistical analysis is preferable for a comprehensive assessment of gene expression levels. Absolute quantification is still not in common use. This report describes a protocol for measuring the absolute levels of plasma miRNA, using RT-qPCR with or without pre-amplification. A fixed volume (200 µL) of EDTA-plasma was prepared from the blood collected from the femoral vein of conscious cynomolgus monkeys (n = 50). Total RNA was extracted using commercially available system. Plasma miRNAs were quantified by probe-based RT-qPCR assays which contains miRNA-specific forward/reverse PCR primer and probe. Standard curves for absolute quantification were generated using commercially available synthetic RNA oligonucleotides. A synthetic cel-miR-238 was used as an external control for normalization and quality assessment. The miRNAs that showed quantification cycle (Cq) values above 35 were pre-amplified prior to the qPCR step. Among the 8 miRNAs examined, miR-122, miR-133a, and miR-192 were detectable without pre-amplification, whereas miR-1, miR-206, and miR-499a required pre-amplification because of their low expression levels. MiR-208a and miR-208b were not detectable even after pre-amplification. Sample processing efficiency was evaluated by the Cq values of the spiked cel-miR-238. In this assay method, technical variation was estimated to be less than 3-fold and the lower limit of quantification (LLOQ) was 102 copy/µL, for most of the examined miRNAs. This protocol provides a better estimate of the quantity of plasma miRNAs, and allows quality assessment of corresponding data from different studies. Considering the low number of miRNAs in body fluids, pre-amplification is useful to enhance detection of poorly expressed miRNAs.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd.;
| | - Noriyo Niino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| |
Collapse
|
13
|
Iguchi T, Sakurai K, Tamai S, Mori K. Circulating liver-specific microRNAs in cynomolgus monkeys. J Toxicol Pathol 2017; 31:3-13. [PMID: 29479135 PMCID: PMC5820098 DOI: 10.1293/tox.2017-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Circulating microRNAs (miRNAs) can potentially be used as sensitive and specific
biomarkers for tissue injury. However, the usefulness of circulating miRNAs as safety
biomarkers in nonclinical toxicological studies using nonhuman primates is debatable owing
to the limited information on organ-specific miRNAs. Therefore, a systematic investigation
was performed to address this point. We identified organ-specific miRNAs from cynomolgus
monkeys by next-generation sequencing analysis, which revealed that miR-122 was only
abundant in the liver, whereas miR-192 was abundant in the liver, stomach, intestines, and
kidney. The sequences of these miRNAs were identical to their human counterparts. Next,
the absolute miR-122 and miR-192 levels were qualified by quantitative reverse
transcription polymerase chain reaction (RT-qPCR) to determine the circulating levels of
the miRNAs. No significant differences in the levels of circulating miRNAs between sexes
were noted, and there was greater interindividual variation in miR-122 (20-fold variation)
than in miR-192 (8-fold variation), based on their dynamic ranges. Finally, we evaluated
the fluctuation in circulating liver-specific miRNAs in a monkey model of
acetaminophen-induced hepatotoxicity. Acetaminophen with L-buthionine-(S,R)-sulfoximine
induced hepatotoxicity in all the animals, which was characterized histopathologically by
centrilobular necrosis and vacuolation of hepatocytes. Circulating miR-122 and miR-192
levels increased more than ALT levels after 24 h, indicating that circulating miR-122 and
miR-192 may serve as sensitive biomarkers for the detection of hepatotoxicity in
cynomolgus monkeys. This review describes the fundamental profiles of circulating
liver-specific miRNAs in cynomolgus monkeys and focusses on their organ specificity,
circulating levels, and fluctuations in drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|