1
|
Ganesh H, Moran J, Roy S, Mathew J, Ackah-Blay J, Costello E, Shan P, Dakshanamurthy S. Impact of Persistent Endocrine-Disrupting Chemicals on Human Nuclear Receptors: Insights from In Silico and Experimental Characterization. Int J Mol Sci 2025; 26:2879. [PMID: 40243467 PMCID: PMC11988381 DOI: 10.3390/ijms26072879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are notable for their persistence, bioaccumulation, and associations with cancer. Human nuclear receptors (hNRs) are primary targets disrupted by these persistent EDCs, resulting in alterations to xenobiotic metabolism, lipid homeostasis, and endocrine function, which can lead to carcinogenic effects. Despite their hazardous effects, comprehensive studies on EDC interactions and their impacts on hNRs remain limited. Here, we profiled the interactions of persistent EDCs, including PFAS, plastic additives, bisphenols, polybrominated diphenyl ethers, and phthalates, with key hNRs such as PXR, CAR, PPARα, PPARγ, PPARδ, AR, and RORγt. Through controlled molecular docking simulations, we observed strong binding of the EDCs to these receptors. Further analysis showed that EDCs exhibit strong binding activity towards hNRs by preferentially interacting with hydrophobic amino acids, namely leucine, isoleucine, methionine, and phenylalanine. PFAS demonstrated the highest binding affinity, characterized by a combination of complementary hydrophobic interactions from their fluorinated carbon chains and polar interactions from their functional groups (e.g., carboxylate, sulfonate) across all receptors. Distinct polycyclic and hydrophobic trends, contributing to strong NR binding, were evident in non-PFAS and nonplastic EDCs. The hNR activity assay in HepG2 cells revealed agonistic effects of dicyclohexyl phthalate (DCHP) and di-2-ethylhexyl phthalate (DEHP) on most receptors, except for PPARα. The hNR transcription factor pathway assay in HepG2 cells demonstrated increased gene expression of VDRE and PXR, suggesting potential chronic effects on xenobiotic metabolism and calcium homeostasis. Overall, our findings demonstrate the need for further research into the endocrine disruption and carcinogenic effects of these persistent EDCs.
Collapse
Affiliation(s)
- Harrish Ganesh
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | - James Moran
- College of Arts & Sciences, Georgetown University, Washington, DC 20057, USA
| | - Saptarshi Roy
- College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | | | | | | | - Priya Shan
- University of Virginia, Charlottesville, VA 22903, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
2
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Morethe MF, Mpenyana-Monyatsi L, Daso AP, Okonkwo OJ. Unveiling the hidden threat: spatiotemporal trends and source apportionments of per-and polyfluorinated alkyl substances in wastewater treatment plants in South Africa. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:71-88. [PMID: 38214987 PMCID: wst_2023_401 DOI: 10.2166/wst.2023.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
At least 11 per-and polyfluorinated alkyl substances (PFASs) were more prevalent during the dry season, whereas only PFBA, L-PFBS, L-PFOS, and PFOA were prevalent during the wet season in 11 WWTPs. The ∑21 PFAS levels in the influent and the effluent ranged from 137 to 3327 ng/L and 265-7,699 ng/L in the dry season and 61-2,953 ng/L and 171-3,458 ng/L in the wet season, respectively. The highest mean concentrations were observed in the influent and effluent for PFOA (586 ng/L) and L-PFBS (552 ng/L); and FOET (1,399 ng/L) and PFNA (811 ng/L) during dry and wet seasons, respectively. During the wet season, 6:2 FTS was observed at the highest concentrations, exhibiting 4,900 ng/L (66%) and 2,351 ng/L (39%), 1,950 ng/L (53%) in SST and BNR, respectively. Principal component analysis (PCA), hierarchical clustering (HCA), and PFHpA/PFOA, PFBA/PFOA, and PFNA/PFOA ratios revealed mixtures of PFAS sources into WWTPs.
Collapse
Affiliation(s)
- Moloko Florence Morethe
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa E-mail:
| | - Lizzy Mpenyana-Monyatsi
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Adegbenro Peter Daso
- Department of Chemistry, Faculty of Science, and Research and Innovation Services (RIS), University of Bath, Claverton Down Campus, Bath BA2 7AY, UK
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
4
|
Bates CA, Haber LT, Moore MM, Schoeny R, Maier A. Development of a framework for risk assessment of dietary carcinogens. Food Chem Toxicol 2023; 180:114022. [PMID: 37716495 DOI: 10.1016/j.fct.2023.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Although there are a number of guidance documents and frameworks for evaluation of carcinogenicity, none of the current methods fully reflects the state of the science. Common limitations include the absence of dose-response assessment and not considering the impact of differing exposure patterns (e.g., intermittent, high peaks vs. lower, continuous exposures). To address these issues, we have developed a framework for risk assessment of dietary carcinogens. This framework includes an enhanced approach for weight of evidence (WOE) evaluation for genetic toxicology data, with a focus on evaluating studies based on the most recent testing guidance to determine whether a chemical is a mutagen. Included alongside our framework is a discussion of resources for evaluating tissue dose and the temporal pattern of internal dose, taking into account the chemical's toxicokinetics. The framework then integrates the mode of action (MOA) and associated dose metric category with the exposure data to identify the appropriate approach(es) to low-dose extrapolation and level of concern associated with the exposure scenario. This framework provides risk managers with additional flexibility in risk management and risk communication options, beyond the binary choice of linear low-dose extrapolation vs. application of uncertainty factors.
Collapse
Affiliation(s)
| | - Lynne T Haber
- Risk Science Center, University of Cincinnati College of Medicine, USA
| | | | | | | |
Collapse
|
5
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Sublethal Exposure of Per- and Polyfluoroalkyl Substances of Varying Chain Length and Polar Functionality Results in Distinct Metabolic Responses in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:242-256. [PMID: 36345965 DOI: 10.1002/etc.5517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants used in industrial applications because of their physicochemical properties, which results in their ubiquitous presence across environmental matrices. To date, legacy PFAS have been well studied; however, the concentration of alternative PFAS may exceed the concentration of legacy pollutants, and more information is needed regarding the sublethal toxicity at the molecular level of aquatic model organisms, such as Daphnia magna. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) are four widely detected PFAS alternatives of varying chain length and polar functionality that are quantified in aquatic environments. The present study examines the metabolic perturbations of PFAS with varying chemistries to D. magna using targeted mass spectrometry-based metabolomics. Daphnia were acutely exposed to sublethal concentrations of PFBA, PFHxA, PFHxS, and PFNA before the polar metabolite profile was extracted from single organisms. Multivariate analysis demonstrated significant separation between the sublethal concentrations of PFHxA, PFHxS, and PFNA relative to the controls; in sum, longer chain lengths demonstrated greater overall perturbations to the extracted metabolic profiles. Univariate statistics revealed significant perturbations in the concentrations of several amino acids, nucleotides/nucleosides, and neurotransmitters with exposure to PFAS. These metabolic perturbations are consistent with disruptions in energy metabolism (pantothenate and coenzyme A metabolism, histidine metabolism) and protein synthesis (aminoacyl-transfer RNA biosynthesis and amino acid metabolism), which were identified through biochemical pathway analysis. These results provide evidence that although PFAS chemistry (chain length and polar functional group) invokes unique metabolic responses, there is also an underlying toxic mode of action that is common with select PFAS exposure. Overall, the present study highlights the capabilities of environmental metabolomics to elucidate the molecular-level perturbations of pollutants within the same chemical class to model aquatic organisms, which can be used to prioritize risk assessment of substituted PFAS alternatives. Environ Toxicol Chem 2023;42:242-256. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicol In Vitro 2022; 84:105451. [PMID: 35921976 DOI: 10.1016/j.tiv.2022.105451] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implications for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical prioritization and regulatory applications without the use of laboratory animals.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Deepika D, Rovira J, Sabuz Ó, Balaguer J, Schuhmacher M, Domingo JL, Kumar V. Framework for risk assessment of PFAS utilizing experimental studies and in-silico models. ENVIRONMENTAL RESEARCH 2022; 208:112722. [PMID: 35026182 DOI: 10.1016/j.envres.2022.112722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFAS), especially PFOS and PFOA, are two widely used synthetic chemicals that can impact human health based on evidence from animal and epidemiologic studies. In this paper, we have reviewed and summarized the influence of PFAS exposure on health, pointing the quality of evidence, and applied translational techniques to integrate evidence for PFAS policy making. This is the first review where highly referred articles on PFAS used for policymaking by several regulatory agencies were collected and evaluated based on the review guidelines developed by the US National Toxicology Program's Office of Health Assessment and Translation (OHAT) review guidelines. Several limitations were observed, including co-exposure to multiple chemicals and limited measurement of primary and secondary outcomes related to specific toxicity. However, data from all the studies provided a moderate to strong level of confidence for link between PFAS exposure and different adverse outcomes. Secondly, for translating the risk to humans, an in-silico model and scaling approach was utilized. Physiologically based pharmacokinetic model (PBPK) was used to calculate the human equivalent dose (HED) from two widely accepted studies and compared with tolerable daily intakes (TDIs) established by various regulatory agencies. Inter-species dose extrapolation was done to compare with human the relevance of dosing scenarios used in animals. Overall, a framework for translation of risk was proposed based on the conclusions of this review with the goal of improving policymaking. The current paper can improve the methodological protocols for PFAS experimental studies and encourage the utilization of in-silico models for translating risk.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Óscar Sabuz
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Jordina Balaguer
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
8
|
Ducatman A, LaPier J, Fuoco R, DeWitt JC. Official health communications are failing PFAS-contaminated communities. Environ Health 2022; 21:51. [PMID: 35538533 PMCID: PMC9092686 DOI: 10.1186/s12940-022-00857-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Environmental health agencies are critical sources of information for communities affected by chemical contamination. Impacted residents and their healthcare providers often turn to federal and state agency webpages, fact sheets, and other documents to weigh exposure risks and interventions. MAIN BODY This commentary briefly reviews scientific evidence concerning per- and polyfluoroalkyl substances (PFAS) for health outcomes that concern members of affected communities and that have compelling or substantial yet differing degree of scientific evidence. It then features official documents in their own language to illustrate communication gaps, as well as divergence from scientific evidence and from best health communication practice. We found official health communications mostly do not distinguish between the needs of heavily contaminated communities characterized by high body burdens and the larger population with ubiquitous but substantially smaller exposures. Most health communications do not distinguish levels of evidence for health outcomes and overemphasize uncertainty, dismissing legitimate reasons for concern in affected communities. Critically, few emphasize helpful approaches to interventions. We also provide examples that can be templates for improvement. CONCLUSIONS Immediate action should be undertaken to review and improve official health communications intended to inform the public and health providers about the risks of PFAS exposure and guide community and medical decisions.
Collapse
Affiliation(s)
- Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV, USA.
| | - Jonas LaPier
- Green Science Policy Institute, Berkeley, CA, USA
| | | | - Jamie C DeWitt
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
9
|
Solan ME, Lavado R. The use of in vitro methods in assessing human health risks associated with short-chain perfluoroalkyl and polyfluoroalkyl substances (PFAS). J Appl Toxicol 2021; 42:1298-1309. [PMID: 34873727 DOI: 10.1002/jat.4270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of industrial chemicals with a ubiquitous and persistent presence in the environment. Of the thousands of PFAS used by consumers and industry, very few have been thoroughly characterized for potential adverse effects. This is especially true for the novel short-chain (C < 8) alternatives that replaced legacy PFAS. Perfluoroalkyl and polyfluoroalkyl substances have revealed inconsistencies in the toxicokinetics predicted by animal models and empirical findings in humans. To adequately assess the possible health effects of short-chain PFAS, there is a need for robust aggregated data sets on the mechanistic underpinnings and physiochemical properties of these alternatives. Acquiring relevant data on the health effects of short-chain PFAS can be achieved through high-throughput methods supported by in vitro human cell-based models. This review briefly summarizes some of the toxicity data obtained using human cells in vitro, discusses the advantages and limitations of cell-based models, and provides insights on potential solutions to challenges presented with the use of these methods for use in safety assessments.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|