1
|
Vasiliu O. The pharmacogenetics of the new-generation antipsychotics - A scoping review focused on patients with severe psychiatric disorders. Front Psychiatry 2023; 14:1124796. [PMID: 36873203 PMCID: PMC9978195 DOI: 10.3389/fpsyt.2023.1124796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the possible correlations between gene variations and the clinical effects of the new-generation antipsychotics is considered essential in the framework of personalized medicine. It is expected that pharmacogenetic data will be useful for increasing the treatment efficacy, tolerability, therapeutic adherence, functional recovery, and quality of life in patients with severe psychiatric disorders (SPD). This scoping review investigated the available evidence about the pharmacokinetics, pharmacodynamics, and pharmacogenetics of five new-generation antipsychotics, i.e., cariprazine, brexpiprazole, aripiprazole, lumateperone, and pimavanserin. Based on the analysis of 25 primary and secondary sources and the review of these agents' summaries of product characteristics, aripiprazole benefits from the most relevant data about the impact of gene variability on its pharmacokinetics and pharmacodynamics, with significant consequences on this antipsychotic's efficacy and tolerability. The determination of the CYP2D6 metabolizer status is important when administering aripiprazole, either as monotherapy or associated with other pharmacological agents. Allelic variability in genes encoding dopamine D2, D3, and serotonin, 5HT2A, 5HT2C receptors, COMT, BDNF, and dopamine transporter DAT1 was also associated with different adverse events or variations in the clinical efficacy of aripiprazole. Brexpiprazole also benefits from specific recommendations regarding the CYP2D6 metabolizer status and the risks of associating this antipsychotic with strong/moderate CYP2D6 or CYP3A4 inhibitors. US Food and Drug Administration (FDA) and European Medicines Agency (EMA) recommendations about cariprazine refer to possible pharmacokinetic interactions with strong CYP3A4 inhibitors or inducers. Pharmacogenetic data about cariprazine is sparse, and relevant information regarding gene-drug interactions for lumateperone and pimavanserin is yet lacking. In conclusion, more studies are needed to detect the influence of gene variations on the pharmacokinetics and pharmacodynamics of new-generation antipsychotics. This type of research could increase the ability of clinicians to predict favorable responses to specific antipsychotics and to improve the tolerability of the treatment regimen in patients with SPD.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
2
|
Soria-Chacartegui P, Villapalos-García G, Zubiaur P, Abad-Santos F, Koller D. Genetic Polymorphisms Associated With the Pharmacokinetics, Pharmacodynamics and Adverse Effects of Olanzapine, Aripiprazole and Risperidone. Front Pharmacol 2021; 12:711940. [PMID: 34335273 PMCID: PMC8316766 DOI: 10.3389/fphar.2021.711940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Olanzapine, aripiprazole and risperidone are atypical antipsychotics or neuroleptics widely used for schizophrenia treatment. They induce various adverse drug reactions depending on their mechanisms of action: metabolic effects, such as weight gain and alterations of glucose and lipid metabolism; hyperprolactinemia and extrapyramidal effects, such as tremor, akathisia, dystonia, anxiety and distress. In this review, we listed polymorphisms associated with individual response variability to olanzapine, aripiprazole and risperidone. Olanzapine is mainly metabolized by cytochrome P450 enzymes, CYP1A2 and CYP2D6, whereas aripiprazole and risperidone metabolism is mainly mediated by CYP2D6 and CYP3A4. Polymorphisms in these genes and other enzymes and transporters, such as enzymes from the uridine 5'-diphospho-glucuronosyltransferase (UGT) family and ATP-binding cassette sub-family B member 1 (ABCB1), are associated to differences in pharmacokinetics. The three antipsychotics act on dopamine and serotonin receptors, among others, and several studies found associations between polymorphisms in these genes and variations in the incidence of adverse effects and in the response to the drug. Since olanzapine is metabolized by CYP1A2, a lower starting dose should be considered in patients treated with fluvoxamine or other CYP1A2 inhibitors. Regarding aripiprazole, a reduced dose should be administered in CYP2D6 poor metabolizers (PMs). Additionally, a reduction to a quarter of the normal dose is recommended if the patient is treated with concomitant CYP3A4 inhibitors. Risperidone dosage should be reduced for CYP2D6 PMs and titrated for CYPD6 ultrarapid metabolizers (UMs). Moreover, risperidone dose should be evaluated when a CYP2D6, CYP3A4 or ABCB1 inhibitor is administered concomitantly.
Collapse
Affiliation(s)
- Paula Soria-Chacartegui
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, United States
| |
Collapse
|
3
|
Smith RM. Advancing psychiatric pharmacogenomics using drug development paradigms. Pharmacogenomics 2017; 18:1459-1467. [PMID: 28975860 DOI: 10.2217/pgs-2017-0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drugs used to treat psychiatric disorders, even when taken as directed, fail to provide adequate relief for a sizeable proportion of patients. Despite our advancements in understanding human genetics and development of high-throughput tools to probe variation, pharmacogenomics has yielded marginal ability to predict drug response for psychiatric disorders. Here, I review the current pharmacogenomics paradigm, identifying opportunities to incorporate drug development strategies designed to increase the probability of delivering a successful molecule to the clinic. This includes using in-depth pharmacokinetic profiles, clear measures of target engagement and target-specific pharmacodynamic responses orthogonal to clinical response. The complex pharmacological profiles psychiatric drugs require re-examination of simplified clinical response-oriented pharmacogenetic hypotheses, in favor of a more complete patient profile.
Collapse
Affiliation(s)
- Ryan M Smith
- Division of Pharmaceutics & Translational Therapeutics, Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, College of Pharmacy, 115 South Grand Avenue, S427 Pharmacy Building, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
A review of genetic alterations in the serotonin pathway and their correlation with psychotic diseases and response to atypical antipsychotics. Schizophr Res 2016; 170:18-29. [PMID: 26644303 DOI: 10.1016/j.schres.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Serotonin is a neurotransmitter that plays a predominant role in mood regulation. The importance of the serotonin pathway in controlling behavior and mental status is well recognized. All the serotonin elements - serotonin receptors, serotonin transporter, tryptophan hydroxylase and monoamine oxidase proteins - can show alterations in terms of mRNA or protein levels and protein sequence, in schizophrenia and bipolar disorder. Additionally, when examining the genes sequences of all serotonin elements, several single nucleotide polymorphisms (SNPs) have been found to be more prevalent in schizophrenic or bipolar patients than in healthy individuals. Several of these alterations have been associated either with different phenotypes between patients and healthy individuals or with the response of psychiatric patients to the treatment with atypical antipsychotics. The complex pattern of genetic diversity within the serotonin pathway hampers efforts to identify the key variations contributing to an individual's susceptibility to the disease. In this review article, we summarize all genetic alterations found across the serotonin pathway, we provide information on whether and how they affect schizophrenia or bipolar disorder phenotypes, and, on the contribution of familial relationships on their detection frequencies. Furthermore, we provide evidence on whether and how specific gene polymorphisms affect the outcome of schizophrenic or bipolar patients of different ethnic groups, in response to treatment with atypical antipsychotics. All data are discussed thoroughly, providing prospective for future studies.
Collapse
|
5
|
Abstract
This review considers pharmacogenetics of the so called 'second-generation' antipsychotics. Findings for polymorphisms replicating in more than one study are emphasized and compared and contrasted with larger-scale candidate gene studies and genome-wide association study analyses. Variants in three types of genes are discussed: pharmacokinetic genes associated with drug metabolism and disposition, pharmacodynamic genes encoding drug targets, and pharmacotypic genes impacting disease presentation and subtype. Among pharmacokinetic markers, CYP2D6 metabolizer phenotype has clear clinical significance, as it impacts dosing considerations for aripiprazole, iloperidone and risperidone, and variants of the ABCB1 gene hold promise as biomarkers for dosing for olanzapine and clozapine. Among pharmacodynamic variants, the TaqIA1 allele of the DRD2 gene, the DRD3 (Ser9Gly) polymorphism, and the HTR2C -759C/T polymorphism have emerged as potential biomarkers for response and/or side effects. However, large-scale candidate gene studies and genome-wide association studies indicate that pharmacotypic genes may ultimately prove to be the richest source of biomarkers for response and side effect profiles for second-generation antipsychotics.
Collapse
Affiliation(s)
- Mark D Brennan
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Moro MF, Carta MG. Evaluating aripiprazole as a potential bipolar disorder therapy for adults. Expert Opin Investig Drugs 2014; 23:1713-30. [DOI: 10.1517/13543784.2014.971152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Cabaleiro T, Ochoa D, López-Rodríguez R, Román M, Novalbos J, Ayuso C, Abad-Santos F. Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers. Hum Psychopharmacol 2014; 29:459-69. [PMID: 25042870 DOI: 10.1002/hup.2420] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify genetic markers capable of predicting the pharmacokinetics, pharmacodynamics, and adverse effects of risperidone. METHODS Genotyping was performed in 70 healthy volunteers receiving a single 1mg oral dose of risperidone. Risperidone and hydroxyrisperidone plasma levels were measured using high-performance liquid chromatography combined with tandem mass spectrometry.Prolactin concentration was quantified by direct chemiluminescence. RESULTS Poor CYP2D6 metabolizers showed higher risperidone Cmax, area under the curve (AUC), and t1/2, as well as lower clearance. They also showed lower Cmax and AUC and higher t1/2 for hydroxyrisperidone. Furthermore, individuals with a mutant VKORC1 genotype had a lower risperidone AUC and t1/2 and higher clearance. The hydroxyrisperidone AUC was lower in individuals with the COMT mutant genotype. Risperidone increased prolactin levels (iAUC and iCmax), which were higher in women than in men. The most frequent reactions were somnolence (47.1%), headache (21.4%), and dizziness (17.1%). Women had neurological effects and headache more frequently than men. The incidence of headache was associated with polymorphisms in the AGTR1 and NAT2; neurological effects were associated with CYP2C19. CONCLUSIONS Differences in the pharmacokinetics of risperidone are due to polymorphisms in CYP2D6, COMT, and VKORC1. Differences in adverse reactions can be explained by gender and polymorphisms in CYP2C19, AGTR1, and NAT2.
Collapse
Affiliation(s)
- Teresa Cabaleiro
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Dolores Ochoa
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Rosario López-Rodríguez
- Liver Unit, Gastroenterology Service, Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Madrid Spain
| | - Manuel Román
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Jesús Novalbos
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics; Instituto de Investigación Sanitaria Fundación Jiménez Díaz; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
8
|
Knisely MR, Carpenter JS, Von Ah D. Pharmacogenomics in the nursing literature: an integrative review. Nurs Outlook 2014; 62:285-96. [PMID: 24863878 DOI: 10.1016/j.outlook.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pharmacogenomics is a rapidly growing component of personalized health care, and nurses must be competent to deliver genomic-focused nursing care. METHODS We conducted an integrative review of pharmacogenomics in the nursing literature. A comprehensive search of the nursing literature was conducted using the key words pharmacogenomics and pharmacogenetics. A total of 47 unique articles were included. RESULTS Articles represented mainly narrative reviews, with limited discussions of the implications for nursing practice, education, or research. As such, they provide limited direction for advancing either clinical practice or scientific inquiry. CONCLUSIONS This review serves as a call to action for more systematic and empirical publications addressing pharmacogenomics in nursing practice, education, and research. Nurses must be involved in and contribute to interdisciplinary conversations and burgeoning clinical practice initiatives related to pharmacogenomics.
Collapse
Affiliation(s)
| | | | - Diane Von Ah
- School of Nursing, Indiana University, Indianapolis, IN
| |
Collapse
|
9
|
Cabaleiro T, López-Rodríguez R, Ochoa D, Román M, Novalbos J, Abad-Santos F. Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum Psychopharmacol 2013; 28:205-14. [PMID: 23559402 DOI: 10.1002/hup.2308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/25/2013] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The pharmacokinetics of olanzapine and response to treatment could be affected by polymorphisms in genes coding for drug-metabolizing enzymes, transporters, or receptors. The aim of this study was to identify genetic markers predictive of pharmacokinetics, pharmacodynamics, and adverse effects of olanzapine. METHODS Sixty-three healthy volunteers receiving a single 5-mg oral dose of olanzapine were genotyped for 39 genetic variants that could be related to the response to olanzapine. All genetic variants were analyzed by PharmaChip, but DRD2 Taq1A polymorphism was determined by real-time polymerase chain reaction. Olanzapine was measured using high-performance liquid chromatography combined with tandem mass spectrometry. The relationship of gender and polymorphisms with olanzapine pharmacokinetics, the change in prolactin levels, and the incidence of adverse effects were evaluated by multiple regression analysis. RESULTS The pharmacokinetics of olanzapine was influenced by polymorphisms in CYP3A5, GSTM3, and GRIN2B. Prolactin levels were affected by gender and polymorphisms in DRD2 and 5-HTR2A. Polymorphisms in CYP2C9, TPMT, UGT1A1, MDR1, and 5-HTR2A were related to some adverse effects of olanzapine. CONCLUSIONS Several polymorphisms can explain differences in the pharmacokinetics, pharmacodynamics, and safety of olanzapine in healthy subjects. Whether these genetic factors influence the risk of therapeutic failure or tolerability in patients remains to be established.
Collapse
Affiliation(s)
- Teresa Cabaleiro
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|