1
|
Zhang Q, Zhang C, Liu C, Zhan H, Li B, Lu Y, Wei H, Cheng J, Li S, Wang C, Hu C, Liao X. Identification and Validation of Novel Potential Pathogenesis and Biomarkers to Predict the Neurological Outcome after Cardiac Arrest. Brain Sci 2022; 12:brainsci12070928. [PMID: 35884735 PMCID: PMC9316619 DOI: 10.3390/brainsci12070928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Predicting neurological outcomes after cardiac arrest remains a major issue. This study aimed to identify novel biomarkers capable of predicting neurological prognosis after cardiac arrest. Expression profiles of GSE29540 and GSE92696 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between high and low brain performance category (CPC) scoring subgroups. Weighted gene co-expression network analysis (WGCNA) was used to screen key gene modules and crossover genes in these datasets. The protein-protein interaction (PPI) network of crossover genes was constructed from the STRING database. Based on the PPI network, the most important hub genes were identified by the cytoHubba plugin of Cytoscape software. Eight hub genes (RPL27, EEF1B2, PFDN5, RBX1, PSMD14, HINT1, SNRPD2, and RPL26) were finally screened and validated, which were downregulated in the group with poor neurological prognosis. In addition, GSEA identified critical pathways associated with these genes. Finally, a Pearson correlation analysis showed that the mRNA expression of hub genes EEF1B2, PSMD14, RPFDN5, RBX1, and SNRPD2 were significantly and positively correlated with NDS scores in rats. Our work could provide comprehensive insights into understanding pathogenesis and potential new biomarkers for predicting neurological outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Yuanzhen Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
- Correspondence: (C.H.); (X.L.)
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
- Correspondence: (C.H.); (X.L.)
| |
Collapse
|
2
|
Reuter-Rice K, Eads JK, Berndt SB, Bennett E. Chapter 6 state of the science of pediatric traumatic brain injury: biomarkers and gene association studies. ANNUAL REVIEW OF NURSING RESEARCH 2016; 33:185-217. [PMID: 25946386 DOI: 10.1891/0739-6686.33.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Our objective is to review the most widely used biomarkers and gene studies reported in pediatric traumatic brain injury (TBI) literature, to describe their findings, and to discuss the discoveries and gaps that advance the understanding of brain injury and its associated outcomes. Ultimately, we aim to inform the science for future research priorities. DATA SOURCES We searched PubMed, MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews for published English language studies conducted in the last 10 years to identify reviews and completed studies of biomarkers and gene associations in pediatric TBI. Of the 131 biomarker articles, only 16 were specific to pediatric TBI patients, whereas of the gene association studies in children with TBI, only four were included in this review. CONCLUSION Biomarker and gene attributes are grossly understudied in pediatric TBI in comparison to adults. Although recent advances recognize the importance of biomarkers in the study of brain injury, the limited number of studies and genomic associations in the injured brain has shown the need for common data elements, larger sample sizes, heterogeneity, and common collection methods that allow for greater understanding of the injured pediatric brain. By building on to the consortium of interprofessional scientists, continued research priorities would lead to improved outcome prediction and treatment strategies for children who experience a TBI. IMPLICATIONS FOR NURSING RESEARCH Understanding recent advances in biomarker and genomic studies in pediatric TBI is important because these advances may guide future research, collaborations, and interventions. It is also important to ensure that nursing is a part of this evolving science to promote improved outcomes in children with TBIs.
Collapse
|
3
|
Cho YE, Latour LL, Kim H, Turtzo LC, Olivera A, Livingston WS, Wang D, Martin C, Lai C, Cashion A, Gill J. Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up. Front Aging Neurosci 2016; 8:168. [PMID: 27468266 PMCID: PMC4942460 DOI: 10.3389/fnagi.2016.00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-β superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging.
Collapse
Affiliation(s)
- Young-Eun Cho
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Lawrence L Latour
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Hyungsuk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - L Christine Turtzo
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Anlys Olivera
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Whitney S Livingston
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Dan Wang
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Ann Cashion
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
4
|
Lamprecht MR, Elkin BS, Kesavabhotla K, Crary JF, Hammers JL, Huh JW, Raghupathi R, Morrison B. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma 2016; 34:97-108. [PMID: 26919808 DOI: 10.1089/neu.2015.4306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls. We found a strong correlation in gene expression changes between the two models (r = 0.69), providing confidence that the in vitro model represented at least part of the in vivo injury cascade. From these data, we searched for genes with significant changes in expression over time (analysis of covariance) and identified sorting protein-related receptor with A-type repeats (SORLA). SORLA directs amyloid precursor protein to the recycling pathway by direct binding and away from amyloid-beta producing enzymes. Mutations of SORLA have been linked to Alzheimer's disease (AD). We confirmed downregulation of SORLA expression in organotypic hippocampal slice cultures by immunohistochemistry and Western blotting and present preliminary data from human tissue that is consistent with these experimental results. Together, these data suggest that the in vitro model of TBI used in this study strongly recapitulates the in vivo TBI pathobiology and is well suited for future mechanistic or therapeutic studies. The data also suggest the possible involvement of SORLA in the post-traumatic cascade linking TBI to AD.
Collapse
Affiliation(s)
- Michael R Lamprecht
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Benjamin S Elkin
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 MEA Forensic Engineers & Scientists , Mississauga, Ontario, Canada
| | - Kartik Kesavabhotla
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - John F Crary
- 3 Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute , and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer L Hammers
- 4 Office of Chief Medical Examiner , City of New York, New York, New York
| | - Jimmy W Huh
- 5 Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Ramesh Raghupathi
- 6 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Barclay Morrison
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
5
|
Naughton BJ, Duncan FJ, Murrey DA, Meadows AS, Newsom DE, Stoicea N, White P, Scharre DW, Mccarty DM, Fu H. Blood genome-wide transcriptional profiles reflect broad molecular impairments and strong blood-brain links in Alzheimer's disease. J Alzheimers Dis 2016; 43:93-108. [PMID: 25079797 DOI: 10.3233/jad-140606] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, little is known regarding the etiology and disease mechanisms of Alzheimer's disease (AD). There is a general urgency for novel approaches to advance AD research. In this study, we analyzed blood RNA from female patients with advanced AD and matched healthy controls using genome-wide gene expression microarrays. Our data showed significant alterations in 3,944 genes (≥2-fold, FDR ≤1%) in AD whole blood, including 2,932 genes that are involved in broad biological functions. Importantly, we observed abnormal transcripts of numerous tissue-specific genes in AD blood involving virtually all tissues, especially the brain. Of altered genes, 157 are known to be essential in neurological functions, such as neuronal plasticity, synaptic transmission and neurogenesis. More importantly, 205 dysregulated genes in AD blood have been linked to neurological disease, including AD/dementia and Parkinson's disease, and 43 are known to be the causative genes of 42 inherited mental retardation and neurodegenerative diseases. The detected transcriptional abnormalities also support robust inflammation, profound extracellular matrix impairments, broad metabolic dysfunction, aberrant oxidative stress, DNA damage, and cell death. While the mechanisms are currently unclear, this study demonstrates strong blood-brain correlations in AD. The blood transcriptional profiles reflect the complex neuropathological status in AD, including neuropathological changes and broad somatic impairments. The majority of genes altered in AD blood have not previously been linked to AD. We believe that blood genome-wide transcriptional profiling may provide a powerful and minimally invasive tool for the identification of novel targets beyond Aβ and tauopathy for AD research.
Collapse
Affiliation(s)
- Bartholomew J Naughton
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - F Jason Duncan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Darren A Murrey
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aaron S Meadows
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - David E Newsom
- Biomedical Genomics Core, Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nicoleta Stoicea
- Division of Cognitive Neurology, Forest Hills Center for Alzheimer's Disease, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA Department of Neurology, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| | - Peter White
- Biomedical Genomics Core, Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Division of Cognitive Neurology, Forest Hills Center for Alzheimer's Disease, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA Department of Neurology, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| | - Douglas M Mccarty
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| | - Haiyan Fu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci U S A 2013; 110:10747-52. [PMID: 23754423 DOI: 10.1073/pnas.1308950110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute traumatic brain injury (TBI) is associated with long-term cognitive and behavioral dysfunction. In vivo studies have shown histone deacetylase inhibitors (HDACis) to be neuroprotective following TBI in rodent models. HDACis are intriguing candidates because they are capable of provoking widespread genetic changes and modulation of protein function. By using known HDACis and a unique small-molecule pan-HDACi (LB-205), we investigated the effects and mechanisms associated with HDACi-induced neuroprotection following CNS injury in an astrocyte scratch assay in vitro and a rat TBI model in vivo. We demonstrate the preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI. HDACi treatment up-regulated the expression of NGF, phospho-TrkA, phospho-protein kinase B (p-AKT), NF-κB, and B-cell lymphoma 2 (Bcl-2) cell survival factors while down-regulating the expression of p75 neurotrophin receptor (NTR), phospho-JNK, and Bcl-2-associated X protein apoptosis factors. HDACi treatment also increased the expression of the stem cell biomarker nestin, and decreased the expression of reactive astrocyte biomarker GFAP within damaged tissue following TBI. These findings provide further insight into the mechanisms by which HDACi treatment after TBI is neuroprotective and support the continued study of HDACis following acute TBI.
Collapse
|
7
|
The influence of genetic factors on brain plasticity and recovery after neural injury. Curr Opin Neurol 2012; 25:682-8. [DOI: 10.1097/wco.0b013e32835a360a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Kamnaksh A, Kwon SK, Kovesdi E, Ahmed F, Barry ES, Grunberg NE, Long J, Agoston D. Neurobehavioral, cellular, and molecular consequences of single and multiple mild blast exposure. Electrophoresis 2012; 33:3680-92. [DOI: 10.1002/elps.201200319] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Erzsebet Kovesdi
- U.S. Department of Veterans Affairs; Veterans Affairs Central Office; Washington; DC; USA
| | | | | | | | - Joseph Long
- Blast-Induced Neurotrauma Branch; Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research; Silver Spring; MD; USA
| | | |
Collapse
|
9
|
Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J, Li Z. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One 2012; 7:e39357. [PMID: 22761770 PMCID: PMC3382215 DOI: 10.1371/journal.pone.0039357] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/19/2012] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related death and disability worldwide. Effective treatment for TBI is limited and many TBI patients suffer from neuropsychiatric sequelae. The molecular and cellular mechanisms underlying the neuronal damage and impairment of mental abilities following TBI are largely unknown. Here we used the next generation sequencing platform to delineate miRNA transcriptome changes in the hippocampus at 24 hours and 7 days following TBI in the rat controlled cortical impact injury (CCI) model, and developed a bioinformatic analysis to identify cellular activities that are regulated by miRNAs differentially expressed in the CCI brains. The results of our study indicate that distinct sets of miRNAs are regulated at different post-traumatic times, and suggest that multiple miRNA species cooperatively regulate cellular pathways for the pathological changes and management of brain injury. The distinctive miRNAs expression profiles at different post-CCI times may be used as molecular signatures to assess TBI progression. In addition to known pathophysiological changes, our study identifies many other cellular pathways that are subjected to modification by differentially expressed miRNAs in TBI brains. These pathways can potentially be targeted for development of novel TBI treatment.
Collapse
Affiliation(s)
- Zhonghua Hu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danni Yu
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Camila Almeida-Suhett
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kang Tu
- Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ann M. Marini
- Department of Neurology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Lee Eiden
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria F. Braga
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jun Zhu
- Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bettermann K, Slocomb JE. Clinical Relevance of Biomarkers for Traumatic Brain Injury. BIOMARKERS FOR TRAUMATIC BRAIN INJURY 2012. [DOI: 10.1039/9781849734745-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Approximately 1.4 million people in the United States sustain a traumatic brain injury (TBI) each year, resulting in more than 235 000 hospitalizations and 50 000 deaths. An estimated 5.3 million Americans have current long-term disabilities as a result of TBI, which results in an estimated $60 billion in healthcare expenditures. Mild TBI (mTBI), which accounts for 80% to 90% of all cases, is the most prevalent form of brain injury in athletes. Many of these traumas still remain undetected, as they are difficult to diagnose. New biomarkers of TBI may allow more rapid diagnosis of TBI, improving early identification and treatment, and could help to predict clinical outcome. The field of TBI biomarkers is rapidly evolving. This chapter will discuss some of the most clinically relevant biomarkers for TBI that have been recently studied in human subjects.
Collapse
Affiliation(s)
- Kerstin Bettermann
- Penn State College of Medicine, Department of Neurology 500 University Drive Hershey, PA 17033 USA
| | - Julia E. Slocomb
- Penn State College of Medicine, Department of Neurology 500 University Drive Hershey, PA 17033 USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Clinical outcome after neurotrauma is considerably variable and can only partly be explained by known prognostic factors. There is converging evidence from genetic research that a number of genetic variants may contribute to this variability. This review provides recent data from human studies, published in the previous year, on genetic factors influencing outcome after neurotrauma. The bibliographic databases MEDLINE, EMBASE and PsycINFO were searched to identify relevant studies. RECENT FINDINGS Genetic susceptibility to various aspects of clinical outcome after neurotrauma was reported in recent clinical studies. Genetic loci investigated include polymorphisms in APOE, MAO-A, BDNF, NOS3, IL-6, NEFH, SLC6A4, COMT, PPP3CC and KIBRA genes. The importance of these findings and future directions are discussed. SUMMARY Recent genetic studies have revealed emerging aspects and extended the existing knowledge regarding the pathogenesis of neurotrauma and the genetic influence on phenotypic diversity. A better understanding of the underlying biological pathways and molecular mechanisms of an individual's response to neurotrauma may hold the promise of novel treatment strategies and improved clinical outcome.
Collapse
|