2
|
Gilhooley MJ, Raoof N, Yu-Wai-Man P, Moosajee M. Inherited Optic Neuropathies: Real-World Experience in the Paediatric Neuro-Ophthalmology Clinic. Genes (Basel) 2024; 15:188. [PMID: 38397177 PMCID: PMC10888158 DOI: 10.3390/genes15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached. A retrospective case-note review of paediatric inherited optic neuropathy patients (0-16 years) in the tertiary neuro-ophthalmology service at Moorfields Eye Hospital between 2016 and 2020 identified 19 patients. Their mean age was 9.3 ± 4.6 (mean ± SD) years at presentation; 68% were male, and 32% were female; and 26% had comorbidities, with diversity of ethnicity. Most patients had undergone genetic testing (95% (n = 18)), of whom 43% (n = 8) received a molecular diagnosis. On average, this took 54.8 ± 19.5 weeks from presentation. A cerebral MRI was performed in 70% (n = 14) and blood testing in 75% (n = 15) of patients as part of their workup. Continual improvement in the investigative pathways for inherited optic neuropathies will be paramount as novel therapeutics become available.
Collapse
Affiliation(s)
- Michael James Gilhooley
- Institute of Ophthalmology, University College London, 11 Bath Street, London EC1V 9EL, UK; (M.J.G.)
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
| | - Naz Raoof
- Institute of Ophthalmology, University College London, 11 Bath Street, London EC1V 9EL, UK; (M.J.G.)
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
- The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1BB, UK
| | - Patrick Yu-Wai-Man
- Institute of Ophthalmology, University College London, 11 Bath Street, London EC1V 9EL, UK; (M.J.G.)
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
- Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Mitochondrial Biology Unit, MRC and Cambridge Centre for Brain Repair, Cambridge University, Forvie Way, Cambridge CB2 0QQ, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, 11 Bath Street, London EC1V 9EL, UK; (M.J.G.)
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
4
|
Jurkute N, Bertacchi M, Arno G, Tocco C, Kim US, Kruszewski AM, Avery RA, Bedoukian EC, Han J, Ahn SJ, Pontikos N, Acheson J, Davagnanam I, Bowman R, Kaliakatsos M, Gardham A, Wakeling E, Oluonye N, Reddy MA, Clark E, Rosser E, Amati-Bonneau P, Charif M, Lenaers G, Meunier I, Defoort S, Vincent-Delorme C, Robson AG, Holder GE, Jeanjean L, Martinez-Monseny A, Vidal-Santacana M, Dominici C, Gaggioli C, Giordano N, Caleo M, Liu GT, Webster AR, Studer M, Yu-Wai-Man P. Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Commun 2021; 3:fcab162. [PMID: 34466801 PMCID: PMC8397830 DOI: 10.1093/braincomms/fcab162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Ungsoo Samuel Kim
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Kim's Eye Hospital, Seoul, South Korea
| | - Adam M Kruszewski
- Department of Neurology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert A Avery
- Division of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Nikolas Pontikos
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - James Acheson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Indran Davagnanam
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Richard Bowman
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marios Kaliakatsos
- Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alice Gardham
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ngozi Oluonye
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Wolfson Neurodisability Service, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Maddy Ashwin Reddy
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Elaine Clark
- Department of Neuroscience, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
- Genetics and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Majida Charif
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
- National Center for Rare Diseases, Inherited Sensory Disorders, Gui de Chauliac Hospital, Montpellier, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier, INSERM INSERM U1051, Université de Montpellier, Montpellier, France
| | - Sabine Defoort
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | | | - Anthony G Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Graham E Holder
- Institute of Ophthalmology, University College London, London, UK
- Yong Loo Lin School of Medicine, Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Luc Jeanjean
- Department of Ophthalmology, University Hospital of Nimes, Nimes, France
| | | | | | - Chloé Dominici
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Cedric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | | | | | - Grant T Liu
- Division of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|