1
|
Kumavat R, Kumar V, Malhotra R, Pandit H, Jones E, Ponchel F, Biswas S. Biomarkers of Joint Damage in Osteoarthritis: Current Status and Future Directions. Mediators Inflamm 2021; 2021:5574582. [PMID: 33776572 PMCID: PMC7969115 DOI: 10.1155/2021/5574582] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a disease of the whole joint organ, characterized by the loss of cartilage, and structural changes in bone including the formation of osteophytes, causing disability and loss of function. It is also associated with systemic mediators and low-grade inflammation. Currently, there is negligible/no availability of specific biomarkers that can be used to facilitate the diagnosis and treatment of OA. The most unmet clinical need is, however, related to the monitoring of disease progression over a short period that can be used in clinical trials. In this review, the value of biomarkers identified over the past decade has been highlighted. These biomarkers are associated with the synthesis and breakdown of cartilage, including collagenous and noncollagenous biomarkers, inflammatory and anti-inflammatory biomarkers, expressed in the biological fluid such as serum, synovial fluid, and urine. Broad validation of novel and clinically applicable biomarkers and their involvement in the pathways are particularly needed for early-stage diagnosis, monitoring disease progression, and severity and examining new drugs to mitigate the effects of this highly prevalent and debilitating condition.
Collapse
Affiliation(s)
- Rajkamal Kumavat
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rajesh Malhotra
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
| |
Collapse
|
2
|
Rega R, Mugnano M, Oleandro E, Tkachenko V, del Giudice D, Bagnato G, Ferraro P, Grilli S, Gangemi S. Detecting Collagen Molecules at Picogram Level through Electric Field-Induced Accumulation. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3567. [PMID: 32599740 PMCID: PMC7349194 DOI: 10.3390/s20123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
The demand for sensors capable of measuring low-abundant collagen in human fluids has highly increased in recent years. Indeed, collagen is expected to be a biomarker for chronic diseases and could monitor their progression. Here we show detection of highly diluted samples of collagen at picogram level thanks to an innovative pyro-electrohydrodynamic jet (p-jet) system. Through the intense electric fields generated by the pyroelectric effect in a ferroelectric crystal, the collagen solution was concentrated on a small area of a slide that was appropriately functionalized to bind proteins. The collagen molecules were labeled by an appropriate fluorophore to show how the number of tiny droplets influences the limit of detection of the technique. The results show that the p-jet is extremely promising for overcoming the current detection limits of collagen-based products in human fluids, performing 10 times better than the enzyme-linked immunosorbent assay (ELISA) and thus paving the way for the early diagnosis of related chronic diseases.
Collapse
Affiliation(s)
- Romina Rega
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
| | - Martina Mugnano
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
| | - Emilia Oleandro
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
- Department of Mathematics and Physics, University of Campania, 81100 Caserta, Italy
| | - Volodymyr Tkachenko
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
| | - Danila del Giudice
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
- Department of Mathematics and Physics, University of Campania, 81100 Caserta, Italy
| | - Gianluca Bagnato
- Division of Pneumology, Papardo Hospital, Contrada Papardo, 98122 Messina, Italy;
| | - Pietro Ferraro
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
| | - Simonetta Grilli
- Department of Physical Science and Technology of Matter, Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), 80078 Pozzuoli (NA), Italy; (M.M.); (E.O.); (V.T.); (D.d.G.); (P.F.); (S.G.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| |
Collapse
|
3
|
COL2A1 and Caspase-3 as Promising Biomarkers for Osteoarthritis Prognosis in an Equus asinus Model. Biomolecules 2020; 10:biom10030354. [PMID: 32111016 PMCID: PMC7175237 DOI: 10.3390/biom10030354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is one of the most degenerative joint diseases in both human and veterinary medicine. The objective of the present study was the early diagnosis of OA in donkeys using a reliable grading of the disease based on clinical, chemical, and molecular alterations. OA was induced by intra-articular injection of 25 mg monoiodoacetate (MIA) as a single dose into the left radiocarpal joint of nine donkeys. Animals were clinically evaluated through the assessment of lameness score, radiographic, and ultrasonographic findings for seven months. Synovial fluid and cartilage samples were collected from both normal and diseased joints for the assessment of matrix metalloproteinases (MMPs) activity, COL2A1 protein expression level, and histopathological and immunohistochemical analysis of Caspase-3. Animals showed the highest lameness score post-induction after one week then decreased gradually with the progression of radiographical and ultrasonographic changes. MMP activity and COL2A1 and Caspase-3 expression increased, accompanied by articular cartilage degeneration and loss of proteoglycan. OA was successfully graded in Egyptian donkeys, with the promising use of COL2A1and Caspase-3 for prognosis. However, MMPs failed to discriminate between early and late grades of OA.
Collapse
|
4
|
Smartphone-integrated urinary CTX-II immunosensor based on wavelength filtering from chromogenic reaction. Biosens Bioelectron 2019; 150:111932. [PMID: 31791877 DOI: 10.1016/j.bios.2019.111932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
The integration of smart IT devices and biochemical assays with optical biosensing technology facilitates the development of efficacious optical biosensors for many practical diagnostic fields, owing to their minimized use of high-technical electronic components and simple operation. Herein, we introduced a simple optical biosensing system based on the specific wavelength filtering principle and count-based analysis method. The developed system uses a smartphone with a paper-based signal guide and a biosensing channel. The paper-based signal guide was prepared by printing red patterns of various brightness on a black background. Given that a blue product is generated as a result of horseradish peroxidase (HRP)-based enzymatic reaction in the biosensing channel, the channel could be used as a blue filter that absorbs red light. When red light reflected from the red pattern is absorbed by the channel, the pattern appears black. As such, the color of the patterns is assimilated with the black background, so it seems to disappear. Consequently, the amount of blue product relative to the concentration of the target analyte can be measured by counting the number of observed patterns on the paper-based signal guide. In this study, the concentration of urinary C-telopeptide fragment of type II collagen (uCTX-II, 0-10 ng/mL) was measured using the developed system without complicated equipment. In addition, the quantitative analysis of uCTX-II in the real urine sample was successfully performed. Therefore, we expect that the developed optical transducing system could be practically used for point-of-care testing (POCT) diagnosis under resource-limited environmental conditions.
Collapse
|
5
|
Cartilage and Bone Serum Biomarkers as Novel Tools for Monitoring Knee Osteochondritis Dissecans Treated with Osteochondral Scaffold. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9275102. [PMID: 30671478 PMCID: PMC6323421 DOI: 10.1155/2018/9275102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/09/2018] [Indexed: 11/17/2022]
Abstract
Knee osteochondritis dissecans (OCD) is a focal disease of the joint characterized by modifications of bone and cartilage tissues. Biomimetic osteochondral scaffolds are used to restore these tissues. The aim of this prognostic prospective cohort study was to evaluate serum biomarkers of cartilage (fragments or propeptide of type II collagen: CTXII, C2C, and CPII) and bone (tartrate-resistant acid phosphatase (TRAP) 5b and osteocalcin (OC)) turnover during follow-up of patients treated with an osteochondral scaffold, to identify which were related to healing outcome and clinical score. We found that cartilage (CPII) and bone (OC) synthetic biomarkers were significantly increased during the first-year follow-up, while the respective degradative markers (CTXII, C2C, and TRAP5b) were not modulated. Only CTXII/CPII and C2C/CPII cartilage ratios were significantly modulated, evidencing a higher remodeling of cartilage compared to bone tissue. Cartilage and bone single biomarkers or ratios at one-year follow-up showed values close to or similar to those of healthy subjects. International Knee Documentation Committee (IKDC) score significantly increased from T0 to T2, while the Tegner score did not. Taking into consideration an IKDC score > 70 as clinical success, we found that all OCD cases with both CPII (> 300 pg/ml) and C2C/CPII (<0.35) presented IKDC scores of clinical success. OCD patients treated with an osteochondral scaffold showed an improvement at one-year follow-up, evidenced by both clinical and serum cartilage biomarkers. These data confirmed that cartilage and bone remodeling took place and showed that systemic biomarkers represent a sensitive tool for monitoring OCD patients during the follow-up.
Collapse
|
6
|
Svoboda SJ, Owens BD, Harvey TM, Tarwater PM, Brechue WF, Cameron KL. The Association Between Serum Biomarkers of Collagen Turnover and Subsequent Anterior Cruciate Ligament Rupture. Am J Sports Med 2016; 44:1687-93. [PMID: 27159304 DOI: 10.1177/0363546516640515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND No study has attempted to associate the levels of preinjury serum biomarkers of collagen turnover with the subsequent risk of anterior cruciate ligament (ACL) injury. HYPOTHESIS Preinjury serum biomarkers of collagen turnover would be associated with the subsequent risk of ACL injury. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS We conducted a case-control study with 45 ACL-injured cases and 45 controls matched for sex, age, height, and weight. In addition to the matching criteria, controls had no history of major joint injury. Baseline preinjury serum samples were obtained from the Department of Defense Serum Repository for all subjects. Samples were assessed for 2 serum biomarkers of collagen synthesis (CPII and CS846) and 2 markers of collagen degradation (C1,2C and C2C) through commercially available enzyme-linked immunosorbent assay (ELISA) kits. All ELISAs were performed in triplicate. Conditional logistic regression models were used to analyze the data. RESULTS Univariate results suggested that both biomarkers for collagen degradation (C1,2C and C2C) were significantly associated with the subsequent likelihood of ACL injury. Serum C2C and C1,2C concentration at baseline were associated with odds ratios (ORs) of 2.05 (95% CI, 1.30-3.23; P = .001) and 3.02 (95% CI, 1.60-5.71; P = .002), respectively. Baseline serum CPII concentrations were also associated with subsequent ACL injury. Serum CPII concentration at baseline was associated with an OR of 4.41 (95% CI, 1.87-10.38; P = .001). Baseline serum CS846 levels approached significance (OR = 0.77; 95% CI, 0.57-1.03; P = .080). Multivariable models suggested that preinjury CPII and C2C concentrations at baseline are important indicators of subsequent ACL injury risk. CONCLUSION Preinjury differences in serum biomarker levels of collagen turnover suggest that collagen metabolism in individuals who go on to tear an ACL may be different when compared with a matched control group with no history of major joint injury. These differences may be reflective of different preinjury biochemical and/or biomechanical risk profiles or genetic factors that subsequently affect both collagen metabolism and ACL injury risk.
Collapse
Affiliation(s)
- Steven J Svoboda
- John A. Feagin Jr Sports Medicine Fellowship, Department of Orthopedic Surgery, Keller Army Hospital, West Point, New York, USA
| | - Brett D Owens
- John A. Feagin Jr Sports Medicine Fellowship, Department of Orthopedic Surgery, Keller Army Hospital, West Point, New York, USA
| | | | - Patrick M Tarwater
- Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - William F Brechue
- Department of Physical Education, United States Military Academy, West Point, New York, USA
| | - Kenneth L Cameron
- John A. Feagin Jr Sports Medicine Fellowship, Department of Orthopedic Surgery, Keller Army Hospital, West Point, New York, USA
| |
Collapse
|
7
|
Duk Han Y, Jin Chun H, Yoon HC. The transformation of common office supplies into a low-cost optical biosensing platform. Biosens Bioelectron 2014; 59:259-68. [DOI: 10.1016/j.bios.2014.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 11/15/2022]
|
8
|
Park YM, Kim SJ, Lee KJ, Yang SS, Min BH, Yoon HC. Detection of CTX-II in serum and urine to diagnose osteoarthritis by using a fluoro-microbeads guiding chip. Biosens Bioelectron 2014; 67:192-9. [PMID: 25172026 DOI: 10.1016/j.bios.2014.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
Abstract
This study reports a new strategy for simultaneous detection of the C-telopeptide fragments of type II collagen (CTX-II) as a biomarker of osteoarthritis (OA) using a fluoro-microbeads guiding chip. As osteoarthritis progresses, the joint components including matrix and cartilage are degraded by proteases. The degraded products such as CTX-II are released into the serum and urine, and the CTX-II concentration in body fluids reflects OA progression. Because the CTX-II has heterogeneous epitope structure in serum (sCTX-II; homodimers) and urine (uCTX-II; monomers or variant monomers), a multiple-sensing device enabling both sandwich and competitive-type immunoassays is required. For multiple assessments of serum and urinary CTX-II, we designed a fluoro-microbeads guiding chip (FMGC) containing multiple sensing areas and connecting channels. Using the approach, the sandwich (sCTX-II) and competition (uCTX-II) assays could be simultaneously performed on a single chip. We designed a fluidic control device enabling selective control of the open-close function of FMGC channels. The immune-specific signal was quantitatively analyzed by counting the number of fluorescent microbeads from the registered images. The results from the developed FMGC assay showed high correlation with those obtained in ELISA. The completion time of the FMGC assay was 24-fold and 3.5-fold shorter than the ELISA for urinary and serum CTX-II. Taken together, it enabled the simultaneous detection of both sCTX-II and uCTX-II. This FMGC-based assay would be a promising tool for monitoring of osteoarthritis.
Collapse
Affiliation(s)
- Yoo Min Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443749, South Korea
| | - Su Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443749, South Korea
| | - Ki Jung Lee
- Department of Electrical and Computer Engineering, Ajou University, South Korea
| | - Sang Sik Yang
- Department of Electrical and Computer Engineering, Ajou University, South Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, South Korea
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 443749, South Korea.
| |
Collapse
|
9
|
Optical immunosensor for quantifying C-telopeptide fragments of type II collagen as an osteoarthritis biomarker in urine. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7412-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Svoboda SJ, Harvey TM, Owens BD, Brechue WF, Tarwater PM, Cameron KL. Changes in serum biomarkers of cartilage turnover after anterior cruciate ligament injury. Am J Sports Med 2013; 41:2108-16. [PMID: 23831890 DOI: 10.1177/0363546513494180] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biomarkers of cartilage turnover and joint metabolism have a potential use in detecting early degenerative changes after a traumatic knee joint injury; however, no study has analyzed biomarkers before an anterior cruciate ligament (ACL) injury and again after injury or in comparison with a similar group of uninjured controls. HYPOTHESIS Changes in serum biomarker levels and the ratio of cartilage degradation to synthesis, from baseline to follow-up, would be significantly different between ACL-injured patients and uninjured controls. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS This case-control study was conducted to examine changes in serum biomarkers of cartilage turnover following ACL injury in a young athletic population. Specifically, 2 markers for type II collagen and aggrecan synthesis (CPII and CS846, respectively) and 2 markers of types I and II degradation and type II degradation only (C1,2C and C2C, respectively) were studied. Preinjury baseline serum samples and postinjury follow-up samples were obtained for 45 ACL-injured cases and 45 uninjured controls matched for sex, age, height, and weight. RESULTS Results revealed significant decreases in C1,2C (P = .042) and C2C (P = .006) over time in the ACL-injured group when compared with the controls. The change in serum concentrations of CS846 from baseline to follow-up was also significantly different between the ACL-injured patients and uninjured controls (P = .002), as was the change between groups in the ratio of C2C:CPII over time (P = .013). No preinjury differences in the ratio of C1,2C:CPII or C2C:CPII were observed between groups; however, postinjury differences were observed for both ratios. CONCLUSION Changes in biomarker concentrations after an ACL injury suggest an alteration in cartilage turnover and joint metabolism in those sustaining ACL injuries compared with uninjured matched controls.
Collapse
Affiliation(s)
- Steven J Svoboda
- John A. Feagin Jr Sports Medicine Fellowship, Department of Orthopedic Surgery, Keller Army Hospital, West Point, NY 10996, USA
| | | | | | | | | | | |
Collapse
|
11
|
Freemont AJ, Denton J. Synovial fluid analysis. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Gibbons SE, Stayton I, Ma Y. Optimization of urinary pteridine analysis conditions by CE-LIF for clinical use in early cancer detection. Electrophoresis 2009; 30:3591-7. [DOI: 10.1002/elps.200900077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|