1
|
Tomasoni D, Paris A, Giampiccolo S, Reali F, Simoni G, Marchetti L, Kaddi C, Neves-Zaph S, Priami C, Azer K, Lombardo R. QSPcc reduces bottlenecks in computational model simulations. Commun Biol 2021; 4:1022. [PMID: 34471226 PMCID: PMC8410852 DOI: 10.1038/s42003-021-02553-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances. Lombardo and colleagues present QSPcc, a computational code compiler designed to convert code from popular scientific programming languages, such as MATLAB or R, into fast-running C code. This reduces the computational load required for complex modelling approaches and reduces user investment learning additional complex languages.
Collapse
Affiliation(s)
- Danilo Tomasoni
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Alessio Paris
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Stefano Giampiccolo
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Federico Reali
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Giulia Simoni
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Luca Marchetti
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Chanchala Kaddi
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, USA
| | - Susana Neves-Zaph
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, USA
| | - Corrado Priami
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.,Department of Computer Science, University of Pisa, Pisa, Italy
| | - Karim Azer
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, USA.,Axcella Health, Cambridge, MA, USA
| | - Rosario Lombardo
- Fondazione the Microsoft Research, University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.
| |
Collapse
|
2
|
Azer K, Kaddi CD, Barrett JS, Bai JPF, McQuade ST, Merrill NJ, Piccoli B, Neves-Zaph S, Marchetti L, Lombardo R, Parolo S, Immanuel SRC, Baliga NS. History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Front Physiol 2021; 12:637999. [PMID: 33841175 PMCID: PMC8027332 DOI: 10.3389/fphys.2021.637999] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Mathematical biology and pharmacology models have a long and rich history in the fields of medicine and physiology, impacting our understanding of disease mechanisms and the development of novel therapeutics. With an increased focus on the pharmacology application of system models and the advances in data science spanning mechanistic and empirical approaches, there is a significant opportunity and promise to leverage these advancements to enhance the development and application of the systems pharmacology field. In this paper, we will review milestones in the evolution of mathematical biology and pharmacology models, highlight some of the gaps and challenges in developing and applying systems pharmacology models, and provide a vision for an integrated strategy that leverages advances in adjacent fields to overcome these challenges.
Collapse
Affiliation(s)
- Karim Azer
- Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States
| | - Chanchala D. Kaddi
- Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States
| | | | - Jane P. F. Bai
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Sean T. McQuade
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Nathaniel J. Merrill
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Benedetto Piccoli
- Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Susana Neves-Zaph
- Translational Disease Modeling, Data and Data Science, Sanofi, Bridgewater, NJ, United States
| | - Luca Marchetti
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Rosario Lombardo
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Silvia Parolo
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | |
Collapse
|
3
|
Michelini S, Balakrishnan B, Parolo S, Matone A, Mullaney JA, Young W, Gasser O, Wall C, Priami C, Lombardo R, Kussmann M. A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space. MICROBIOME 2018; 6:171. [PMID: 30241567 PMCID: PMC6151060 DOI: 10.1186/s40168-018-0545-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/30/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Weaning is a period of marked physiological change. The introduction of solid foods and the changes in milk consumption are accompanied by significant gastrointestinal, immune, developmental, and microbial adaptations. Defining a reduced number of infections as the desired health benefit for infants around weaning, we identified in silico (i.e., by advanced public domain mining) infant gut microbes as potential deliverers of this benefit. We then investigated the requirements of these bacteria for exogenous metabolites as potential prebiotic feeds that were subsequently searched for in the natural product space. RESULTS Using public domain literature mining and an in silico reverse metabolic approach, we constructed probiotic-prebiotic-food associations, which can guide targeted feeding of immune health-beneficial microbes by weaning food; analyzed competition and synergy for (prebiotic) nutrients between selected microbes; and translated this information into designing an experimental complementary feed for infants enrolled in a pilot clinical trial ( http://www.nourishtoflourish.auckland.ac.nz/ ). CONCLUSIONS In this study, we applied a benefit-oriented microbiome research strategy for enhanced early-life immune health. We extended from "classical" to molecular nutrition aiming to identify nutrients, bacteria, and mechanisms that point towards targeted feeding to improve immune health in infants around weaning. Here, we present the systems biology-based approach we used to inform us on the most promising prebiotic combinations known to support growth of beneficial gut bacteria ("probiotics") in the infant gut, thereby favorably promoting development of the immune system.
Collapse
Affiliation(s)
- Samanta Michelini
- The Microsoft Research–University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Biju Balakrishnan
- The Liggins Institute, the University of Auckland, Auckland, New Zealand
| | - Silvia Parolo
- The Microsoft Research–University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Alice Matone
- The Microsoft Research–University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Jane A. Mullaney
- AgResearch, Food & Bio-based Products, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch, Food & Bio-based Products, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Clare Wall
- Discipline of Nutrition, School of Medical Science, University of Auckland, Auckland, New Zealand
| | - Corrado Priami
- The Microsoft Research–University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Rosario Lombardo
- The Microsoft Research–University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Martin Kussmann
- The Liggins Institute, the University of Auckland, Auckland, New Zealand
- National Science Challenge “High Value Nutrition”, Auckland, New Zealand
| |
Collapse
|