1
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
2
|
Giusti I, Poppa G, Di Fazio G, D'Ascenzo S, Dolo V. Metastatic Dissemination: Role of Tumor-Derived Extracellular Vesicles and Their Use as Clinical Biomarkers. Int J Mol Sci 2023; 24:ijms24119590. [PMID: 37298540 DOI: 10.3390/ijms24119590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major cause of mortality in humans; often, rather than the primary tumor, it is the presence of metastases that are the cause of death. Extracellular vesicles (EVs) are small structures released by both normal and cancer cells; regarding the latter, they have been demonstrated to modulate almost all cancer-related processes, such as invasion, angiogenesis induction, drug resistance, and immune evasion. In the last years, it has become clear how EVs are widely involved in metastatic dissemination as well as in pre-metastatic niche (PMN) formation. Indeed, in order to achieve a successful metastatic process, i.e., penetration by cancer cells into distant tissues, the shaping of a favorable environment into those distant tissue, i.e., PMN formation, is mandatory. This process consists of an alteration that takes place in a distant organ and paves the way for the engraftment and growth of circulating tumor cells derived from the tumor primary site. This review focuses on the role of EVs in pre-metastatic niche formation and metastatic dissemination, also reporting the last studies suggesting the EVs role as biomarkers of metastatic diseases, possibly in a liquid biopsy approach.
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giuseppina Poppa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giulia Di Fazio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Sandra D'Ascenzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Magoling BJA, Wu AYT, Chen YJ, Wong WWT, Chuo STY, Huang HC, Sung YC, Hsieh HT, Huang P, Lee KZ, Huang KW, Chen RH, Chen Y, Lai CPK. Membrane Protein Modification Modulates Big and Small Extracellular Vesicle Biodistribution and Tumorigenic Potential in Breast Cancers In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208966. [PMID: 36609913 DOI: 10.1002/adma.202208966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) are released by cells to mediate intercellular communication under pathological and physiological conditions. While small EVs (sEVs; <100-200 nm, exosomes) are intensely investigated, the properties and functions of medium and large EVs (big EVs (bEVs); >200 nm, microvesicles) are less well explored. Here, bEVs and sEVs are identified as distinct EV populations, and it is determined that bEVs are released in a greater bEV:sEV ratio in the aggressive human triple-negative breast cancer (TNBC) subtype. PalmGRET, bioluminescence-resonance-energy-transfer (BRET)-based EV reporter, reveals dose-dependent EV biodistribution at nonlethal and physiological EV dosages, as compared to lipophilic fluorescent dyes. Remarkably, the bEVs and sEVs exhibit unique biodistribution profiles, yet individually promote in vivo tumor growth in a syngeneic immunocompetent TNBC breast tumor murine model. The bEVs and sEVs share mass-spectrometry-identified tumor-progression-associated EV surface membrane proteins (tpEVSurfMEMs), which include solute carrier family 29 member 1, Cd9, and Cd44. tpEVSurfMEM depletion attenuates EV lung organotropism, alters biodistribution, and reduces protumorigenic potential. This study identifies distinct in vivo property and function of bEVs and sEVs in breast cancer, which suggest the significant role of bEVs in diseases, diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Bryan John Abel Magoling
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, TIGP, Academia Sinica, Taipei, 11529, Taiwan
| | - Anthony Yan-Tang Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, TIGP, Academia Sinica, Taipei, 11529, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yen-Ju Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Wendy Wan-Ting Wong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Steven Ting-Yu Chuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin Tzu Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Poya Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Kang-Zhang Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ruey-Hwa Chen
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, TIGP, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, TIGP, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Serafini FL, Delli Pizzi A, Simeone P, Giammarino A, Mannetta C, Villani M, Izzi J, Buca D, Catitti G, Chiacchiaretta P, Trebeschi S, Miscia S, Caulo M, Lanuti P. Circulating Extracellular Vesicles: Their Role in Patients with Abdominal Aortic Aneurysm (AAA) Undergoing EndoVascular Aortic Repair (EVAR). Int J Mol Sci 2022; 23:ijms232416015. [PMID: 36555653 PMCID: PMC9782915 DOI: 10.3390/ijms232416015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a frequent aortic disease. If the diameter of the aorta is larger than 5 cm, an open surgical repair (OSR) or an endovascular aortic repair (EVAR) are recommended. To prevent possible complications (i.e., endoleaks), EVAR-treated patients need to be monitored for 5 years following the intervention, using computed tomography angiography (CTA). However, this radiological method involves high radiation exposure in terms of CTA/year. In such a context, the study of peripheral-blood-circulating extracellular vesicles (pbcEVs) has great potential to identify biomarkers for EVAR complications. We analyzed several phenotypes of pbcEVs using polychromatic flow cytometry in 22 patients with AAA eligible for EVAR. From each enrolled patient, peripheral blood samples were collected at AAA diagnosis, and after 1, 6, and 12 months following EVAR implantation, i.e. during the diagnostic follow-up protocol. Patients developing an endoleak displayed a significant decrease in activated-platelet-derived EVs between the baseline condition and 6 months after EVAR intervention. Furthermore, we also observed, that 1 month after EVAR implantation, patients developing an endoleak showed higher concentrations of activated-endothelial-derived EVs than patients who did not develop one, suggesting their great potential as a noninvasive and specific biomarker for early identification of EVAR complications.
Collapse
Affiliation(s)
- Francesco Lorenzo Serafini
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Andrea Delli Pizzi
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | | | - Cristian Mannetta
- Unit of Vascular Surgery, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Michela Villani
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Jacopo Izzi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Davide Buca
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Massimo Caulo
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
5
|
Hisey CL, Artuyants A, Guo G, Chang V, Reshef G, Middleditch M, Jacob B, Chamley LW, Blenkiron C. Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e60. [PMID: 38938775 PMCID: PMC11080891 DOI: 10.1002/jex2.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in-depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV-associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications.
Collapse
Affiliation(s)
- Colin L. Hisey
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Anastasiia Artuyants
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
| | - George Guo
- Department of PhysiologySchool of Medical SciencesUniversity of AucklandAucklandNew Zealand
| | - Vanessa Chang
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Gabrielle Reshef
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | | | - Bincy Jacob
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Lawrence W. Chamley
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Cherie Blenkiron
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
6
|
Cancer-Associated Exosomal CBFB Facilitates the Aggressive Phenotype, Evasion of Oxidative Stress, and Preferential Predisposition to Bone Prometastatic Factor of Breast Cancer Progression. DISEASE MARKERS 2022; 2022:8446629. [PMID: 35903297 PMCID: PMC9325341 DOI: 10.1155/2022/8446629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background. Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods. We used an online database to analyze the expression and prognostic value of core binding factor subunit β (CBFB) and oxidative stress–related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results. Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion. Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress–related proteins NAE1 and NOS1.
Collapse
|
7
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
8
|
Li R, Yang X. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biol 2022; 23:124. [PMID: 35659722 PMCID: PMC9164488 DOI: 10.1186/s13059-022-02692-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Based on a deep generative model of variational graph autoencoder (VGAE), we develop a new method, DeepLinc (deep learning framework for Landscapes of Interacting Cells), for the de novo reconstruction of cell interaction networks from single-cell spatial transcriptomic data. DeepLinc demonstrates high efficiency in learning from imperfect and incomplete spatial transcriptome data, filtering false interactions, and imputing missing distal and proximal interactions. The latent representations learned by DeepLinc are also used for inferring the signature genes contributing to the cell interaction landscapes, and for reclustering the cells based on the spatially coded cell heterogeneity in complex tissues at single-cell resolution.
Collapse
Affiliation(s)
- Runze Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Extracellular vesicles produced by mouse breast adenocarcinoma 4T1 cells with up- or down-regulation of adaptor protein Ruk/CIN85 differentially modulate the biological properties of 4T1 WT cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Uribe J, Traberg WC, Hama A, Druet V, Mohamed Z, Ooi A, Pappa AM, Huerta M, Inal S, Owens RM, Daniel S. Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomater Sci Eng 2021; 7:5585-5597. [PMID: 34802228 DOI: 10.1021/acsbiomaterials.1c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer-derived exosomes (cEXOs) facilitate transfer of information between tumor and human primary stromal cells, favoring cancer progression. Although the mechanisms used during this information exchange are still not completely understood, it is known that binding is the initial contact established between cEXOs and cells. Hence, studying binding and finding strategies to block it are of great therapeutic value. However, such studies are challenging for a variety of reasons, including the need for human primary cell culture, the difficulty in decoupling and isolating binding from internalization and cargo delivery, and the lack of techniques to detect these specific interactions. In this work, we created a supported biomimetic stem cell membrane incorporating membrane components from human primary adipose-derived stem cells (ADSCs). We formed the supported membrane on glass and on multielectrode arrays to offer the dual option of optical or electrical detection of cEXO binding to the membrane surface. Using our platform, we show that cEXOs bind to the stem cell membrane and that binding is blocked when an antibody to integrin β1, a component of ADSC surface, is exposed to the membrane surface prior to cEXOs. To test the biological outcome of blocking this interaction, we first confirm that adding cEXOs to cultured ADSCs leads to the upregulation of vascular endothelial growth factor, a measure of proangiogenic activity. Next, when ADSCs are first blocked with anti-integrin β1 and then exposed to cEXOs, the upregulation of proangiogenic activity and cell proliferation are significantly reduced. This biomimetic membrane platform is the first cell-free label-free in vitro platform for the recapitulation and study of cEXO binding to human primary stem cells with potential for therapeutic molecule screening as it is compatible with scale-up and multiplexing.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Adel Hama
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Victor Druet
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Amanda Ooi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Miriam Huerta
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States.,School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| |
Collapse
|
11
|
Rouillard ME, Sutter PA, Durham OR, Willis CM, Crocker SJ. Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. Aging Dis 2021; 12:1462-1475. [PMID: 34527422 PMCID: PMC8407882 DOI: 10.14336/ad.2021.0608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are an abundant and dynamic glial cell exclusive to the central nervous system (CNS). In the context of injury, inflammation, and/or diseases of the nervous system, astrocyte responses, termed reactive astrogliosis, are a recognized pathological feature across a range of conditions and diseases. However, the impact of reactive astrogliosis is not uniform and varies by context and duration (time). In recent years, extracellular communication between glial cells via extracellular vesicles (EVs) has garnered interest as a process connected with reactive astrogliosis. In this review, we relate recent findings on astrocyte-derived extracellular vesicles (ADEVs) with a focus on factors that can influence the effects of ADEVs and identified age related changes in the function of ADEVs. Additionally, we will discuss the current limitations of existing experimental approaches and identify questions that highlight areas for growth in this field, which will continue to enhance our understanding of ADEVs in age-associated processes.
Collapse
Affiliation(s)
- Megan E Rouillard
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Pearl A Sutter
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Olivia R Durham
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Cory M Willis
- 2Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen J Crocker
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers. RECENT FINDINGS Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity. EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evan T Keller
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Quinn Z, Mao W, Xia Y, John R, Wan Y. Conferring receptors on recipient cells with extracellular vesicles for targeted drug delivery. Bioact Mater 2021; 6:749-756. [PMID: 33024896 PMCID: PMC7522541 DOI: 10.1016/j.bioactmat.2020.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous subset of breast cancer characterized by its lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), which altogether prevents TNBC from being treated effectively. For many years, the treatment paradigms and overall survival of patients with TNBC have remained largely stagnant. Recent attempts to convert cold tumors to hot tumors by promoting antigen presentation have shown increased T cell infiltration and significantly induced immune responses for tumor killing. Inspired by this concept, the expression of specific targetable antigens on TNBC cells may further benefit relevant targeted drug delivery. In this study, we successfully conferred sufficient HER2 on the surface of TNBC MDA-MB-231 cells via simple EV-plasma membrane fusion with HER2+ extracellular vesicles (EV) derived from HER2 overexpressing BT-474 cells. Subsequently, anti-HER2 antibody conjugated paclitaxel-loaded liposomes were used for HER2-targeted drug delivery. Our findings demonstrated this HER2 grafting, in conjunction with targeted drug delivery, can improve the treatment efficacy in vitro and in vivo. This novel approach represents a facile method of altering cell membrane antigen presentation via convenient EVs uptake and may pave the way for the burgeoning wave of targeted therapy and/or immunotherapy.
Collapse
Affiliation(s)
- Zachary Quinn
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, PR China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Rhea John
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| |
Collapse
|
14
|
Environmental control of mammary carcinoma cell expansion by acidification and spheroid formation in vitro. Sci Rep 2020; 10:21959. [PMID: 33319820 PMCID: PMC7738540 DOI: 10.1038/s41598-020-78989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Like other cancers, mammary carcinoma progression involves acidification of the tumor microenvironment, which is an important factor for cancer detection and treatment strategies. However, the effects of acidity on mammary carcinoma cell morphology and phenotype have not been thoroughly characterized. Here, we evaluated fundamental effects of environmental acidification on mammary carcinoma cells in standard two-dimensional cultures and three-dimensional spheroids. Acidification decreased overall mammary carcinoma cell viability, while increasing their resistance to the anthracycline doxorubicin. Environmental acidification also increased extracellular vesicle production by mammary carcinoma cells. Conditioned media containing these vesicles appeared to increase fibroblast motility. Acidification also increased mammary carcinoma cell motility when cultured with fibroblasts in spheroids. Taken together, results from this study suggest that environmental acidification induces drug resistance and extracellular vesicle production by mammary carcinoma cells that promote tumor expansion.
Collapse
|
15
|
Uribe J, Liu HY, Mohamed Z, Chiou AE, Fischbach C, Daniel S. Supported Membrane Platform to Assess Surface Interactions between Extracellular Vesicles and Stromal Cells. ACS Biomater Sci Eng 2020; 6:3945-3956. [PMID: 33463350 DOI: 10.1021/acsbiomaterials.0c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles secreted by eukaryotic cells that stimulate cell communication and horizontal cargo exchange. EV interactions with stromal cells can result in molecular changes in the recipient cell and, in some cases, lead to disease progression. However, mechanisms leading to these changes are poorly understood. A few model systems are available for studying the outcomes of surface interactions between EV membranes with stromal cells. Here, we created a hybrid supported bilayer incorporating EVs membrane material, called an extracellular vesicle supported bilayer, EVSB. Using EVSBs, we investigated the surface interactions between breast cancer EVs and adipose-derived stem cells (ADSCs) by culturing ADSCs on EVSBs and analyzing cell adhesion, spreading, viability, vascular endothelial growth factor (VEGF) secretion, and myofibroblast differentiation. Results show that cell viability, adhesion, spreading, and proangiogenic activity were enhanced, conditions that promote oncogenic activity, but cell differentiation was not. This model system could be used to develop therapeutic strategies to limit EV-ADSC interactions and proangiogenic conditions. Finally, this model system is not limited to the study of cancer but can be used to study surface interactions between EVs from any origin and any target cell to investigate EV mechanisms leading to cellular changes in other diseases.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
de Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers (Basel) 2020; 12:E1400. [PMID: 32485907 PMCID: PMC7352974 DOI: 10.3390/cancers12061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins constantly transferred between different cell types, contributing to autocrine and paracrine signaling. In recent years, they have been shown to play vital roles, not only in normal biological functions, but also in pathological conditions, such as cancer. In the multistep process of cancer progression, EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers. Importantly, their potential to overcome the current limitations or the present diagnostic procedures has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique, whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based biomarkers for BCa were found to overcome these limitations. Here, we review their potential advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa management was reviewed and discussed.
Collapse
Affiliation(s)
- Manuel Castanheira de Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria J. Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Avelino Fraga
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Laboratory of Genetics and Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
17
|
Norouzi-Barough L, Asgari Khosro Shahi A, Mohebzadeh F, Masoumi L, Haddadi MR, Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell Int 2020; 20:187. [PMID: 32489323 PMCID: PMC7247259 DOI: 10.1186/s12935-020-01276-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes (EXs) are small extracellular vesicles, a size range of 40-100 nm in diameter, actively secreted by most eukaryotic cells into surrounding body fluids like blood, saliva, urine, bile, breast milk and etc. These endosomal-derived vesicles mediate cell-cell communication between various cell populations through transmitting different signaling molecules such as lipids, proteins, and nucleic acids, and participate in a wide range of physiological and pathological body processes. Tumor-derived EXs (TDEs) are vehicles for intercellular communications by transferring bioactive molecules; they deliver oncogenic molecules and contain different molecular cargoes compared to EXs delivered from normal cells, therefore, they can be used as non-invasive invaluable biomarkers for early diagnosis and prognosis of most cancers, including breast and ovarian cancers. Their presence and stability in different types of body fluids highlight them as a suitable diagnostic biomarker for distinguishing various cancer stages. In addition, EXs can predict the therapeutic efficacy of chemotherapy agents and drug resistance in cancer cells, as well as determine the risk of metastasis in different disease stages. In this study, the recent literature on the potential role of TDEs in the diagnosis and prognosis of ovarian and breast cancers is summarized, and then exosome isolation techniques including traditional and new approaches are briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Ladan Masoumi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haddadi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathology Laboratory, Shiraz, Iran
- Shefa Neuroscience Research Center, Tehran, Iran
| |
Collapse
|
18
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
19
|
Medeiros B, Allan AL. Molecular Mechanisms of Breast Cancer Metastasis to the Lung: Clinical and Experimental Perspectives. Int J Mol Sci 2019; 20:E2272. [PMID: 31071959 PMCID: PMC6540248 DOI: 10.3390/ijms20092272] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide, and >90% of breast cancer-related deaths are associated with metastasis. Breast cancer spreads preferentially to the lung, brain, bone and liver; termed organ tropism. Current treatment methods for metastatic breast cancer have been ineffective, compounded by the lack of early prognostic/predictive methods to determine which organs are most susceptible to developing metastases. A better understanding of the mechanisms that drive breast cancer metastasis is crucial for identifying novel biomarkers and therapeutic targets. Lung metastasis is of particular concern as it is associated with significant patient morbidity and a mortality rate of 60-70%. This review highlights the current understanding of breast cancer metastasis to the lung, including discussion of potential new treatment approaches for development.
Collapse
Affiliation(s)
- Braeden Medeiros
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
20
|
Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y, Long M, Liu H, Mao J, Liu Q, Sun X, Chen H. Mesenchymal stem cell‑derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol 2019; 54:1843-1852. [PMID: 30864702 DOI: 10.3892/ijo.2019.4747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to be involved in tumor progression and the modulation of the tumor microenvironment, partly through their secretome. Extracellular vesicles (EVs) are membranous nanovesicles secreted by multiple types of cells and have been demonstrated to mediate intercellular communication in both physiological and pathological conditions. However, numerous questions still remain regarding the underlying mechanisms and functional consequences of these interactions. The purpose of this study was to investigate the effects of human umbilical cord mesenchymal stem cell‑derived EVs (hUC‑MSC‑EVs) on the proliferation, migration and invasion of human breast cancer cells. We successfully generated and identified hUC‑MSCs and hUC‑MSC‑EVs which were used in this study. The results revealed that treatment of the MDA‑MB‑231 and MCF‑7 human breast cancer cells with medium containing hUC‑MSC‑EVs significantly enhanced the proliferation, migration and invasion of the cells in vitro. Treatment of the cells with medium containing hUC‑MSC‑EVs also reduced E‑cadherin expression and increased N‑cadherin expression, thus promoting the epithelial‑mesenchymal transition (EMT) of the breast cancer cells. Treatment of the breast cancer cells with extracellular signal‑regulated kinase (ERK) inhibitor prior to the interaction with hUC‑MSC‑EVs significantly reversed the enhanced proliferation, migration and invasion, as well as the EMT of the breast cancer cells induced by the hUC‑MSC‑EVs. On the whole, these data indicate that hUC‑MSC‑EVs promote the invasive and migratory potential of breast cancer cells through the induction of EMT via the ERK pathway, leading to malignant tumor progression and metastasis. Taken together, the findings of this study suggest that targeting pathways to reverse EMT may lead to the development of novel therapeutic approaches with which to combat breast cancer.
Collapse
Affiliation(s)
- Xiaohe Zhou
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tao Li
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yufei Chen
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Nannan Zhang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Pengli Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yingying Liang
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Melissa Long
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Liu
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jian Mao
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiuyan Liu
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huabiao Chen
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|