1
|
Raya S, Malla B, Shrestha S, Sthapit N, Kattel H, Sharma ST, Tuladhar R, Maharjan R, Takeda T, Kitajima M, Tandukar S, Haramoto E. Quantification of multiple respiratory viruses in wastewater in the Kathmandu Valley, Nepal: Potential implications of wastewater-based epidemiology for community disease surveillance in developing countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170845. [PMID: 38340866 DOI: 10.1016/j.scitotenv.2024.170845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Despite being the major cause of death, clinical surveillance of respiratory viruses at the community level is very passive, especially in developing countries. This study focused on the surveillance of three respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IFV-A), and respiratory syncytial virus (RSV)] in the Kathmandu Valley, Nepal, by implication of wastewater-based epidemiology (WBE). Fifty-one untreated wastewater samples were from two wastewater treatment plants (WWTPs) between April and October 2022. Among eight combinations of the pre-evaluated methods, the combination of concentration by simple centrifugation, pretreatment by DNA/RNA Shield (Zymo Research), and extraction by the QIAamp Viral RNA Mini Kit (QIAGEN) showed the best performance for detecting respiratory viruses. Using this method with a one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR), SARS-CoV-2 RNA was successfully detected from both WWTPs (positive ratio, 100 % and 81 %) at concentrations of 5.6 ± 0.6 log10 copies/L from each WWTP. Forty-six SARS-CoV-2 RNA-positive samples were further tested for three mutation site-specific one-step RT-qPCR (L452R, T478K, and E484A/G339D), where G339D/E484A mutations were frequently detected in both WWTPs (96 %). IFV-A RNA was more frequently detected in WWTP A (84 %) compared to WWTP B (38 %). RSV RNA was also detected in both WWTPs (28 % and 8 %, respectively). This is the first study on detecting IFV-A and RSV in wastewater in Nepal, showing the applicability and importance of WBE for respiratory viruses in developing countries where clinical data are lacking.
Collapse
Affiliation(s)
- Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Hari Kattel
- Department of Microbiology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sangita Tara Sharma
- Department of Microbiology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Reshma Tuladhar
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Rabin Maharjan
- Department of Civil Engineering, Institute of Engineering, Tribhuvan University, Lalitpur, Nepal
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | | | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
2
|
Koirala P, Dhakal S, Malla B, Ghimire A, Siddiqui MA, Dawadi P. SARS-CoV-2 Burden in Wastewater and its Elimination Using Disinfection. Microbiol Insights 2023; 16:11786361231201598. [PMID: 37745090 PMCID: PMC10517603 DOI: 10.1177/11786361231201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Background Pathogenic viruses have been abundant and diverse in wastewater, reflecting the pattern of infection in humans. Human feces, urine, and perhaps other washouts that frequently circulate in sewage systems may contaminate wastewater with SARS-CoV-2. It's crucial to effectively disinfect wastewater since poorly handled wastewater could put the population at risk of infection. Aims To emphasize the presence and spread of SARS-CoV-2 in sewage (wastewater) through viral shedding from the patients to detect the virus in the population using wastewater-based epidemiology. Also, to effectively manage the transmission of SARS-CoV-2 and reduce the spread of the virus in the population using disinfectants is highlighted. Methods We evaluated articles from December 2019 to August 2022 that addressed SARS-CoV-2 shedding in wastewater and surveillance through wastewater-based epidemiology. We included the papers on wastewater disinfection for the elimination of SARS-CoV-2. Google Scholar, PubMed, and Research4Life are the three electronic databases from which all of the papers were retrieved. Results It is possible for viral shedding to get into the wastewater. The enumeration of viral RNA from it can be used to monitor virus circulation in the human community. SARS-CoV-2 can be removed from wastewater by using modern disinfection techniques such as sodium hypochlorite, liquid chlorine, chlorine dioxide, peracetic acid, and ultraviolet light. Conclusion SARS-CoV-2 burden estimates at the population level can be obtained via longitudinal examination of wastewater, and SARS-CoV-2 can be removed from the wastewater through disinfection.
Collapse
Affiliation(s)
- Prashanna Koirala
- National Animal Breeding and Genetics Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Sandesh Dhakal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Archana Ghimire
- Department of Development Education, School of Education, Kathmandu University, Hattiban, Lalitpur, Nepal
| | - Mohammad Ataullah Siddiqui
- Molecular Biotechnology Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|