Wang Z, Zhang Y, Chai J, Wu Y, Zhang W, Zhang Z. Roflumilast: Modulating neuroinflammation and improving motor function and depressive symptoms in multiple sclerosis.
J Affect Disord 2024;
350:761-773. [PMID:
38220100 DOI:
10.1016/j.jad.2023.12.074]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND
Multiple sclerosis (MS) is an autoimmune disease causing central nervous system demyelination, often associated with depression. Current treatments for MS do not effectively address both physical disability and depression. Roflumilast, a phosphodiesterase-4 inhibitor with anti-inflammatory properties, has shown promise for autoimmune diseases.
METHODS
We used an experimental autoimmune encephalomyelitis (EAE) rat model to study roflumilast's effects. Motor dysfunction and depression symptoms were assessed, and histopathological analysis evaluated its anti-inflammatory properties. Flow cytometry examined the drug's impact on brain microglia. TNF-α, IL-1β, and IL-6 levels in hippocampal tissue were assessed using ELISA kits.
RESULTS
Roflumilast improved motor dysfunction and depression symptoms in EAE rats. Histopathological analysis revealed reduced inflammation, demyelination, and axonal loss in the spinal cord. Roflumilast suppressed microglial cell activation and conversion to pro-inflammatory M1-type cells. Flow cytometry showed roflumilast inhibited inflammatory marker expression in microglia and their activation in the hippocampus. IL-6 was identified as a roflumilast target for suppressing hippocampal inflammation.
LIMITATIONS
This study used an animal model and did not assess long-term or potential side effects of roflumilast treatment.
CONCLUSIONS
Roflumilast holds promise as a treatment for depression and motor impairment in MS. Its anti-inflammatory properties, reducing inflammation and inhibiting microglial activation, suggest its potential for MS therapy. However, further research is needed to evaluate long-term effects and safety in MS patients.
Collapse