1
|
Ma Q, Augusto DG, Montero-Martin G, Caillier SJ, Osoegawa K, Cree BAC, Hauser SL, Didonna A, Hollenbach JA, Norman PJ, Fernandez-Vina M, Oksenberg JR. High-resolution DNA methylation screening of the major histocompatibility complex in multiple sclerosis. Front Neurol 2023; 14:1326738. [PMID: 38145128 PMCID: PMC10739394 DOI: 10.3389/fneur.2023.1326738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Gonzalo Montero-Martin
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- HLA Histocompatibility and Immunogenetics Laboratory, Vitalant, Phoenix, AZ, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marcelo Fernandez-Vina
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Abstract
OBJECTIVE In a previous pilot monocentric study, we investigated the relation between human leukocyte antigen (HLA) genotype and multiple sclerosis (MS) disease progression over 2 years. HLA-A*02 allele was correlated with better outcomes, whereas HLA-B*07 and HLA-B*44 were correlated with worse outcomes. The objective of this extension study was to further investigate the possible association of HLA genotype with disease status and progression in MS as measured by sensitive and complex clinical and imaging parameters. METHODS Hundred and forty-six MS patients underwent HLA typing. Over a 4-year period of follow-up, we performed three clinical and magnetic resonance imaging (MRI) assessments per patient, which respectively included Expanded Disability Status Scale, Multiple Sclerosis Severity Scale, Timed-25-Foot-Walk, 9-Hole Peg Test, Symbol Digit Modalities Test, Brief Visual Memory Test, California Verbal Learning Test-II, and whole-brain atrophy, fluid-attenuated inversion recovery (FLAIR) lesion volume change and number of new FLAIR lesions using icobrain. We then compared the clinical and MRI outcomes between predefined HLA patient groups. RESULTS Results of this larger study with a longer follow-up are in line with what we have previously shown. HLA-A*02 allele is associated with potentially better MS outcomes, whereas HLA-B*07, HLA-B*44, HLA-B*08, and HLA-DQB1*06 with a potential negative effect. Results for HLA-DRB1*15 are inconclusive. CONCLUSION In the era of MS treatment abundance, HLA genotype might serve as an early biomarker for MS outcomes to inform individualized treatment decisions.
Collapse
|
3
|
Hassani A, Khan G. Epstein-Barr Virus and miRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front Immunol 2019; 10:695. [PMID: 31001286 PMCID: PMC6456696 DOI: 10.3389/fimmu.2019.00695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression post transcriptionally. In healthy individuals, miRNAs contribute to maintaining gene expression homeostasis. However, the level of miRNAs expressed is markedly altered in different diseases, including multiple sclerosis (MS). The impact of such changes is being investigated, and thought to shape the immune system into the inflammatory autoimmune phenotype. Much is yet to be learned about the contribution of miRNAs in the molecular pathology of MS. Epstein-Barr virus (EBV) infection is a major risk factor for the development of MS. EBV encodes more than 40 miRNAs, most of which have been studied in the context of EBV associated cancers. These viral miRNAs regulate genes involved in cell apoptosis, antigen presentation and recognition, as well as B cell transformation. If EBV infection contributes to the pathology of MS, it is plausible that EBV miRNAs may be involved. Unfortunately, there are limited studies addressing how EBV miRNAs are involved in the pathogenesis of MS. This review summarizes what has been reported regarding cellular and viral miRNA profiles in MS and proposes possible interactions between the two in the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Bettencourt A, Boleixa D, Guimarães AL, Leal B, Carvalho C, Brás S, Samões R, Santos E, Costa PP, Silva B, da Silva AM. The vitamin D receptor gene FokI polymorphism and Multiple Sclerosis in a Northern Portuguese population. J Neuroimmunol 2017; 309:34-37. [DOI: 10.1016/j.jneuroim.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
|
5
|
Human leucocyte antigen (HLA) class I and II typing in Belgian multiple sclerosis patients. Acta Neurol Belg 2017; 117:61-65. [PMID: 27797002 DOI: 10.1007/s13760-016-0716-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
This is one of the first studies to compare the frequencies of different human leucocyte antigen (HLA) class I and II alleles and haplotype HLA-DRB1*15-DQB1*06 in a cohort of 119 patients with multiple sclerosis (MS) and a cohort of 124 healthy controls in Belgium. An association with MS was found for the HLA-DRB1*15 (odds ratio [OR] 2.60 [95% confidence interval (CI) 1.51-4.50]) and HLA-DQB1*06 (OR 1.97 [95% CI 1.18-3.29]) alleles, and for haplotype DRB1*15-DQB1*06 (OR 2.63 [95% CI 1.52-4.56]). The HLA-B*07 allele also tended to be more frequent in MS patients (OR 1.46 [95% CI 0.80-2.65]) and more frequent among MS patients with than in those without the HLA-DRB1*15 allele (26/54 [48.1%] versus 6/65 [9.2%]; p value <0.0001). Other alleles were underrepresented in MS patients, such as the HLA-DRB1*07 (OR 0.39 [95% CI 0.21-0.73]) and HLA-A*02 (OR 0.56 [95% CI 0.34-0.94]), showing a protective role against the disease. The HLA-B*44 (OR 0.58 [95% CI 0.31-1.09]) and HLA-DRB1*04 (OR 0.75 [95% CI 0.42-1.34]) alleles tended to be less frequent in MS patients. Altogether, the significant results observed in this population are in line with those from other countries and confirm that propensity to MS can be due to a complex presence of various HLA class I and class II alleles.
Collapse
|
6
|
Lysandropoulos AP, Mavroudakis N, Pandolfo M, El Hafsi K, van Hecke W, Maertens A, Billiet T, Ribbens A. HLA genotype as a marker of multiple sclerosis prognosis: A pilot study. J Neurol Sci 2017; 375:348-354. [PMID: 28320165 DOI: 10.1016/j.jns.2017.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/26/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The identification of a biomarker with prognostic value is an unmet need in multiple sclerosis (MS). The objective of this study was to investigate a possible association of HLA genotype with disease status and progression in MS, based on comprehensive and sensitive clinical and magnetic resonance imaging (MRI) parameters to measure disease effects. METHOD A total of 118 MS patients (79 females, 39 males) underwent HLA typing. Patient MS status was assessed at two time points in a 2-year interval, based on clinical scores (including EDSS, MSSS, T25FW, 9-HPT, SDMT, BVMT, CVLT-II) and MRI evaluations. Quantitative brain MRI values were obtained for whole brain atrophy, FLAIR lesion volume change and number of new lesions using MSmetrix. Predefined HLA patient groups were compared as of disease status and progression. Global assessment was achieved by an overall t-statistic and assessment per measurement by a Welch test and/or Mann Whitney U test. The effects of multiple covariates, including age, gender and disease duration as well as scan parameters, were also evaluated using a regression analysis. RESULTS The HLA-A*02 allele was associated with better outcomes in terms of MSSS, EDSS and new lesion count (Welch test p-value<0.05). The HLA-B*07 and HLA-B*44 alleles showed a global negative effect on disease status, although none of the measurements reached significance (p-value<0.05). Results for the HLA-DRB1*15, HLA-DQB1*06 and HLA-B*08 alleles were inconclusive. The influence of the confounding variables on the statistical analysis was limited.
Collapse
Affiliation(s)
| | - Nicolas Mavroudakis
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Massimo Pandolfo
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Kaoutar El Hafsi
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
7
|
Bertoli AC, Carvalho R, Freitas MP, Ramalho TC, Mancini DT, Oliveira MC, de Varennes A, Dias A. Structural determination of Cu and Fe–Citrate complexes: theoretical investigation and analysis by ESI-MS. J Inorg Biochem 2015; 144:31-7. [DOI: 10.1016/j.jinorgbio.2014.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/10/2023]
|
8
|
Bertoli AC, Carvalho R, Freitas MP, Ramalho TC, Mancini DT, Oliveira MC, de Varennes A, Dias A. Theoretical spectroscopic studies and identification of metal-citrate (Cd and Pb) complexes by ESI-MS in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:271-280. [PMID: 25222323 DOI: 10.1016/j.saa.2014.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/07/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
The combined use of ESI-MS, FTIR-ATR and theoretical calculations for the determination of metal-citrate (metal=Cd and Pb) structures are reported. Mass spectrometry allowed to determine the stoichiometry 1:1 and 2:1 of the complexes, corroborating the theoretical calculations. The species found in the ratio 2:1 had their molecular structures readjusted, since the deprotonation of citric acid differed from what was simulated. The calculations of thermodynamic stability (ΔH(0)(aq.)) for the complexes obtained by B3LYP/LANL2DZ were more exoenergetic than those found by PM6. However, for both methods, the stability of the complexes follows a trend, that is, the lowest-energy isomers in PM6 are also the most stable in B3LYP/LANL2DZ. The infrared analysis suggested that carboxyl groups are complexation sites and hydrogen bonds can help in the stability of the complexes. The vibrational frequencies in B3LYP/LANL2DZ had a good correlation with the experimental infrared results.
Collapse
Affiliation(s)
- Alexandre C Bertoli
- Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil.
| | - Ruy Carvalho
- Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
| | - Matheus P Freitas
- Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
| | - Teodorico C Ramalho
- Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
| | - Daiana T Mancini
- Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
| | - Maria C Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Amarílis de Varennes
- Departamento de Química Ambiental, Instituto Superior de Agronomia, Universidade de Lisboa, 1399-017 Lisbon, Portugal
| | - Ana Dias
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
9
|
Abstract
One of the most consistent findings in multiple sclerosis (MS) is that development of MS is linked with carriage of the class II human leucocyte antigen (HLA) molecule HLA-DRB1*15:01; around 60 % of Caucasian MS patients carry this allele compared to 25-30 % of ethnically matched healthy individuals. However, other HLA molecules have also been linked to the development of MS. In this chapter, the association between different HLA types and susceptibility to MS will be reviewed, and other linkages between the carriage of specific HLA molecules and clinical and experimental findings in MS will be considered.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Riyal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
10
|
Bettencourt A, Silva AM, Carvalho C, Leal B, Santos E, Costa PP, Silva BM. The role of KIR2DS1 in multiple sclerosis--KIR in Portuguese MS patients. J Neuroimmunol 2014; 269:52-5. [PMID: 24529855 DOI: 10.1016/j.jneuroim.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/13/2022]
Abstract
Killer Immunoglobulin-like Receptor (KIR) genes may influence both resistance and susceptibility to different autoimmune diseases, but their role in the pathogenesis of Multiple Sclerosis (MS) is still unclear. We investigated the influence of KIR genes on MS susceptibility in 447 MS Portuguese patients, and also whether genetic interactions between specific KIR genes and their HLA class I ligands could contribute to the pathogenesis of MS. We observed a negative association between the activating KIR2DS1 gene and MS (adjusted OR=0.450, p=0.030) independently from the presence of HLA-DRB1*15 allele. The activating KIR2DS1 receptor seems to confer protection against MS most probably through modulation of autoreactive T cells by Natural Killer cells.
Collapse
Affiliation(s)
- Andreia Bettencourt
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal.
| | - Ana Martins Silva
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal; Neurology Department, Centro Hospitalar do Porto - Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Cláudia Carvalho
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| | - Bárbara Leal
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| | - Ernestina Santos
- Neurology Department, Centro Hospitalar do Porto - Hospital de Santo António (CHP-HSA), Porto, Portugal
| | - Paulo P Costa
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Porto, Portugal
| | - Berta M Silva
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UPorto), Porto Portugal
| |
Collapse
|
11
|
Jankosky C, Deussing E, Gibson RL, Haverkos HW. Viruses and vitamin D in the etiology of type 1 diabetes mellitus and multiple sclerosis. Virus Res 2011; 163:424-30. [PMID: 22119899 DOI: 10.1016/j.virusres.2011.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 12/28/2022]
Abstract
Although specific viruses have been associated with autoimmune diseases, none fulfill Koch's criteria of causation. The etiologies of such diseases appear to be complex and multifactorial. For example, one might propose that the etiology of type 1 diabetes mellitus results from a toxic metabolite of nitrosamines during an enteroviral infection. Multiple sclerosis might result from a cascade of events involving several herpes virus infections activated during periods of vitamin D deficiency. We encourage investigators to consider Rotman's sufficient-component causal model when developing hypotheses for testing for the etiology of chronic diseases. Delineating the web of causation may lead to additional strategies for prevention and treatment of several autoimmune diseases.
Collapse
Affiliation(s)
- Christopher Jankosky
- Division of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
12
|
Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 2011; 74:1-13. [PMID: 21338381 DOI: 10.1111/j.1365-3083.2011.02536.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by recurrent episodes of demyelination and axonal lesion mediated by CD4(+) T cells with a proinflammatory Th1 and Th17 phenotype, macrophages, and soluble inflammatory mediators. Identification of Th17 cells led to breaking the dichotomy of Th1/Th2 axis in immunopathogenesis of autoimmune diseases such as MS, and its experimental model, experimental autoimmune encephalomyelitis (EAE). Th17 cells are characterized by expression of retinoic acid-related orphan receptor (ROR)γt and signal transducer and activator of transcription 3 (STAT3) factors. Th17-produced cytokine profile including interleukin (IL)-17, IL-6, IL-21, IL-22, IL-23 and tumour necrosis factor (TNF)-α, which have proinflammatory functions, suggests it as an important factor in immunopathogenesis of MS, because the main feature of MS pathophysiology is the neuroinflammatory reaction. The blood brain barrier (BBB) disruption is an early and central event in MS pathogenesis. Autoreactive Th17 cells can migrate through the BBB by the production of cytokines such as IL-17 and IL-22, which disrupt tight junction proteins in the central nervous system (CNS) endothelial cells. Consistent with this observation and regarding the wide range production of proinflammatory cytokines and chemokines by Th17 cells, it is expected that Th17 cell to be as a potent pathogenic factor in disease immunopathophysiology. Th17-mediated inflammation is characterized by neutrophil recruitment into the CNS and neurons killing. However, the majority of our knowledge about the role of Th17 in MS pathogenesis is resulted in investigation into EAE animal models. In this review, we intend to focus on the newest information regarding the precise role of Th17 cells in immunopathogenesis of MS, and its animal model, EAE.
Collapse
Affiliation(s)
- F Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Brynedal B, Hillert J. Entering a new phase of multiple sclerosis genetic epidemiology. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a complex disease, where multiple genetic variants have been found to influence the risk of development. The evidence for environmental-attributable risk is also strong, indicating an interaction of risk factors leading to the development of disease in the individual. An importance of genetic variation within the human leukocyte antigen (HLA) region has been known for almost 40 years, but the search for additional variants connected to susceptibility has been long and largely fruitless. Joint efforts of the MS research community in collecting and sharing results from genetic case control cohorts, together with the technical development, eventually lead to the identification of multiple risk factors for MS as in other complex diseases. The list of identified genetic variants associated with disease is increasingly growing and some leads for functional mechanisms are emerging. Many of the identified regions also harbor associations with other immune-mediated diseases, suggesting common etiology across these various diseases. The great challenge in front of us now is to translate these point-wise indications of genetic effects to functional understanding of how disease develops.
Collapse
Affiliation(s)
- Boel Brynedal
- Department of Neurology, Yale Medical School, New Haven, CT, USA
- Medical & Population Genetics, The Broad Institute, Cambridge, MA, USA
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Healy BC, Liguori M, Tran D, Chitnis T, Glanz B, Wolfish C, Gauthier S, Buckle G, Houtchens M, Stazzone L, Khoury S, Hartzmann R, Fernandez-Vina M, Hafler DA, Weiner HL, Guttmann CRG, De Jager PL. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology 2010; 75:634-40. [PMID: 20713950 DOI: 10.1212/wnl.0b013e3181ed9c9c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In addition to the main multiple sclerosis (MS) major histocompatibility complex (MHC) risk allele (HLA DRB1*1501), investigations of the MHC have implicated several class I MHC loci (HLA A, HLA B, and HLA C) as potential independent MS susceptibility loci. Here, we evaluate the role of 3 putative protective alleles in MS: HLA A*02, HLA B*44, and HLA C*05. METHODS Subjects include a clinic-based patient sample with a diagnosis of either MS or a clinically isolated syndrome (n = 532), compared to subjects in a bone marrow donor registry (n = 776). All subjects have 2-digit HLA data. Logistic regression was used to determine the independence of each allele's effect. We used linear regression and an additive model to test for correlation between an allele and MRI and clinical measures of disease course. RESULTS After accounting for the effect of HLA DRB1*1501, both HLA A*02 and HLA B*44 are validated as susceptibility alleles (p(A*02) 0.00039 and p(B*44) 0.00092) and remain significantly associated with MS susceptibility in the presence of the other allele. Although A*02 is not associated with MS outcome measures, HLA B*44 demonstrates association with a better radiologic outcome both in terms of brain parenchymal fraction and T2 hyperintense lesion volume (p = 0.03 for each outcome). CONCLUSION The MHC class I alleles HLA A*02 and HLA B*44 independently reduce susceptibility to MS, but only HLA B*44 appears to influence disease course, preserving brain volume and reducing the burden of T2 hyperintense lesions in subjects with MS.
Collapse
Affiliation(s)
- B C Healy
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB 168c, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32:543-54. [PMID: 20233088 DOI: 10.3109/08923971003667627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, axonal loss, and gliosis. The inflammatory lesions are manifested by a large infiltration and a heterogeneous population of cellular and soluble mediators of the immune system, such as T cells, B cells, macrophages, and microglia, as well as a broad range of cytokines, chemokines, antibodies, complement, and other toxic substances. Prostaglandins (PGs) are arachidonic acid-derived autacoids that have a role in the modulation of many physiological systems including the CNS, respiratory, cardiovascular, gastrointestinal, genitourinary, endocrine, and immune systems. PG production is associated with inflammation, a major feature in MS that is characterized by the loss of myelinating oligodendrocytes in the CNS. With respect to the role of PGs in the induction of inflammation, they can be effective mediators in the pathophysiology of MS. Thus use of agonists or antagonists of PG receptors may be considered as a new therapeutic protocol in MS. In this review, we try to clarify the role of PGs in immunopathology and treatment of MS.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran.
| | | |
Collapse
|
17
|
Mishto M, Bellavista E, Ligorio C, Textoris-Taube K, Santoro A, Giordano M, D'Alfonso S, Listì F, Nacmias B, Cellini E, Leone M, Grimaldi LME, Fenoglio C, Esposito F, Martinelli-Boneschi F, Galimberti D, Scarpini E, Seifert U, Amato MP, Caruso C, Foschini MP, Kloetzel PM, Franceschi C. Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population. PLoS One 2010; 5:e9287. [PMID: 20174631 PMCID: PMC2823778 DOI: 10.1371/journal.pone.0009287] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/27/2010] [Indexed: 11/18/2022] Open
Abstract
Background Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and regulation of autoreactive CD8+ T cells in Multiple Sclerosis. Methodology/Principal Findings Immunoproteasomes and PA28-αβ regulator are present in MS affected brain area and accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons, endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262 Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2 codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111–119. Conclusion/Significance The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLA-A*02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of immunoproteasome in the MS pathogenesis.
Collapse
Affiliation(s)
- Michele Mishto
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|