1
|
Tian Q, Yan Z, Guo Y, Chen Z, Li M. Inflammatory Role of CCR1 in the Central Nervous System. Neuroimmunomodulation 2024; 31:173-182. [PMID: 39116843 DOI: 10.1159/000540460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemokine ligands and their corresponding receptors are essential for regulating inflammatory responses. Chemokine receptors can stimulate immune activation or inhibit/promote signaling pathways by binding to specific chemokine ligands. Among these receptors, CC chemokine receptor 1 (CCR1) is extensively studied as a G protein-linked receptor target, predominantly expressed in various leukocytes, and is considered a promising target for anti-inflammatory therapy. Furthermore, CCR1 is essential for monocyte extravasation and transportation in inflammatory conditions. Its involvement in inflammatory diseases of the central nervous system (CNS), including multiple sclerosis, Alzheimer's disease, and stroke, has been extensively studied along with its ligands. Animal models have demonstrated the beneficial effects resulting from inhibiting CCR1 or its ligands. SUMMARY This review demonstrates the significance of CCR1 in CNS inflammatory diseases, the molecules implicated in the inflammatory pathway, and potential drugs or molecules for treating CNS diseases. This evidence may offer new targets or strategies for treating inflammatory CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Du J, Lin Z, Fu XH, Gu XR, Lu G, Hou J. Research progress of the chemokine/chemokine receptor axes in the oncobiology of multiple myeloma (MM). Cell Commun Signal 2024; 22:177. [PMID: 38475811 PMCID: PMC10935833 DOI: 10.1186/s12964-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zheng Lin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue-Hang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Ran Gu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, 257099, China.
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Gilchrist A, Echeverria SL. Targeting Chemokine Receptor CCR1 as a Potential Therapeutic Approach for Multiple Myeloma. Front Endocrinol (Lausanne) 2022; 13:846310. [PMID: 35399952 PMCID: PMC8991687 DOI: 10.3389/fendo.2022.846310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma is an incurable plasma B-cell malignancy with 5-year survival rates approximately 10-30% lower than other hematologic cancers. Treatment options include combination chemotherapy followed by autologous stem cell transplantation. However, not all patients are eligible for autologous stem cell transplantation, and current pharmacological agents are limited in their ability to reduce tumor burden and extend multiple myeloma remission times. The "chemokine network" is comprised of chemokines and their cognate receptors, and is a critical component of the normal bone microenvironment as well as the tumor microenvironment of multiple myeloma. Antagonists targeting chemokine-receptor 1 (CCR1) may provide a novel approach for treating multiple myeloma. In vitro CCR1 antagonists display a high degree of specificity, and in some cases signaling bias. In vivo studies have shown they can reduce tumor burden, minimize osteolytic bone damage, deter metastasis, and limit disease progression in multiple myeloma models. While multiple CCR1 antagonists have entered the drug pipeline, none have entered clinical trials for treatment of multiple myeloma. This review will discuss whether current CCR1 antagonists are a viable treatment option for multiple myeloma, and studies aimed at identifying which CCR1 antagonist(s) are most appropriate for this disease.
Collapse
Affiliation(s)
- Annette Gilchrist
- College of Pharmacy-Downers Grove, Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, United States
- *Correspondence: Annette Gilchrist,
| | | |
Collapse
|
4
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
5
|
Cui LY, Chu SF, Chen NH. The role of chemokines and chemokine receptors in multiple sclerosis. Int Immunopharmacol 2020; 83:106314. [PMID: 32197226 PMCID: PMC7156228 DOI: 10.1016/j.intimp.2020.106314] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
Summarize the study of the role of chemokines and their receptors in multiple sclerosis (MS) patients and MS animal models. Discuss their potential significance in inflammatory injury and repair of MS. Summarize the progress in the research of MS antagonists in recent years with chemokine receptors as targets.
Multiple sclerosis (MS) is a chronic inflammatory disease that is characterized by leukocyte infiltration and subsequent axonal damage, demyelinating inflammation, and formation of sclerosing plaques in brain tissue. The results of various studies in patients indicate that autoimmunity and inflammation make an important impact on the pathogenesis of MS. Chemokines are key mediators of inflammation development and cell migration, mediating various immune cell responses, including chemotaxis and immune activation, and are important in immunity and inflammation, therefore we focus on chemokines and their receptors in multiple sclerosis. In this article, we summarize the study of the role of prominent chemokines and their receptors in MS patients and MS animal modelsand discuss their potential significance in inflammatory injury and repair of MS. We have also summarized the progress in the treatment of multiple sclerosis antagonists in recent years with chemokine receptors as targets.
Collapse
Affiliation(s)
- Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Itatani Y, Kawada K, Fujishita T, Kakizaki F, Hirai H, Matsumoto T, Iwamoto M, Inamoto S, Hatano E, Hasegawa S, Maekawa T, Uemoto S, Sakai Y, Taketo MM. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. Gastroenterology 2013; 145:1064-1075.e11. [PMID: 23891973 DOI: 10.1053/j.gastro.2013.07.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 07/08/2013] [Accepted: 07/20/2013] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Loss of the tumor suppressor SMAD4 correlates with progression of colorectal cancer (CRC). In mice, colon tumors that express CCL9 recruit CCR1(+) myeloid cells, which facilitate tumor invasion and metastasis by secreting matrix metalloproteinase 9. METHODS We used human CRC cell lines to investigate the ability of SMAD4 to regulate expression of CCL15, a human ortholog of mouse CCL9. We used immunohistochemistry to compare levels of CCL15 and other proteins in 141 samples of human liver metastases. RESULTS In human CRC cell lines, knockdown of SMAD4 increased CCL15 expression, and overexpression of SMAD4 decreased it. SMAD4 bound directly to the promoter region of the CCL15 gene to negatively regulate its expression; transforming growth factor-β increased binding of SMAD4 to the CCL15 promoter and transcriptional repression. In livers of nude mice, SMAD4-deficient human CRC cells up-regulated CCL15 to recruit CCR1(+) cells and promote metastasis. In human tumor samples, there was a strong inverse correlation between levels of CCL15 and SMAD4; metastases that expressed CCL15 contained 3-fold more CCR1(+) cells than those without CCL15. Patients with CCL15-expressing metastases had significantly shorter times of disease-free survival than those with CCL15-negative metastases. CCR1(+) cells in the metastases expressed the myeloid cell markers CD11b and myeloperoxidase, and also matrix metalloproteinase 9. CONCLUSIONS In human CRC cells, loss of SMAD4 leads to up-regulation of CCL15 expression. Human liver metastases that express CCL15 contain higher numbers CCR1(+) cells; patients with these metastases have shorter times of disease-free survival. Reagents designed to block CCL15 recruitment of CCR1(+) cells could prevent metastasis of CRC to liver.
Collapse
Affiliation(s)
- Yoshiro Itatani
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The chemokine receptor CCR1 has been the target of intensive research for nearly two decades. Small-molecule antagonists were first reported in 1998 and, since then, many inhibitors for CCR1 have been brought forth. Yet, with all the money and time spent, to date, no small-molecule antagonists have successfully moved past Phase II clinical trials. With the current advancement of CCR1 antagonists by Bristol-Myers Squibb and Chemocentrix, there has been renewed interest. In this review, we present an overview of CCR1, its activating ligands, methods of signaling, and downstream response. We discuss studies that indicate CCR1 plays an important role in multiple myeloma and the underlying molecular mechanisms. Finally, we present an overview of the clinical and preclinical compounds for CCR1. We address individual structures, discuss their pharmacological précis, and summarize the published evidence to assess their value for use in multiple myeloma.
Collapse
|
8
|
Vallet S, Raje N. Bone anabolic agents for the treatment of multiple myeloma. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2011; 4:339-49. [PMID: 22139744 PMCID: PMC3234318 DOI: 10.1007/s12307-011-0090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/12/2011] [Indexed: 01/10/2023]
Abstract
The majority of patients with multiple myeloma develop bone osteolytic lesions, which may lead to severe complications, including pain and fractures. The pathogenesis of bone disease depends on uncoupled bone remodeling, characterized by increased bone resorption due to upregulation of osteoclast activity and decreased bone formation due to osteoblast inhibition. In myeloma, impaired osteoblast differentiation and increased apoptosis have been described. Responsible for these effects are integrin-mediated adhesion to tumor cells and soluble factors, including WNT antagonists, BMP2 inhibitors and numerous cytokines. Based on the evidence of osteoblast suppression in myeloma, bone anabolic agents have been developed and are currently undergoing clinical evaluation. Due to bidirectional inhibitory effects characterizing tumor cells and osteoblasts interactions, agents targeting osteoblasts are expected to reduce tumor burden along with improvement of bone health. This review summarizes the current knowledge on osteoblast inhibition in myeloma and provides an overview on the clinical grade agents with bone anabolic properties, which represent new promising therapeutic strategies in myeloma.
Collapse
Affiliation(s)
- Sonia Vallet
- Division of Hematology and Oncology, Massachusetts General Hospital/Harvard Medical School, POB 216, 55 Fruit Street, Boston, MA 02114 USA
- Medical Oncology, National Center for Tumor Diseases (NCT)/University of Heidelberg, Im Neuenheimer Feld 460, Heidelberg, 69120 Germany
| | - Noopur Raje
- Division of Hematology and Oncology, Massachusetts General Hospital/Harvard Medical School, POB 216, 55 Fruit Street, Boston, MA 02114 USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION By directing cell trafficking, differentiation and growth, chemokines modulate the immune response and are involved in the pathogenesis of autoimmune diseases and cancers, including multiple myeloma (MM). MM, the second most common hematological malignancy in the US, is characterized by disordered plasma cell growth within the bone marrow microenvironment. CCL3 and its receptors, CCR1 in particular, play a central role in the pathogenesis of MM and MM-induced osteolytic bone disease. AREAS COVERED This review describes the functional role of CCR1 in MM and the preclinical results observed with CCR1 antagonists. CCL3 and CCR1 stimulate tumor growth, both directly and indirectly, via upregulation of cell adhesion and cytokine secretion. In addition, they modulate the osteoclast/osteoblast balance, by inducing osteoclast differentiation and inhibiting osteoblast function. Targeting either ligand or receptor reverses these effects, leading to in vivo tumor burden control and prevention of osteolysis, as confirmed in both murine and humanized mouse models. EXPERT OPINION These promising data set the stage for clinical trials to assess the effects of CCR1 inhibitors in MM. The success of these studies depends on the development of novel antagonists with improved chemical/physical properties and careful selection of the patient population who may benefit the most from these agents.
Collapse
Affiliation(s)
- Sonia Vallet
- Massachusetts General Hospital, Harvard Medical School, Department of Hematology Oncology, Boston, MA 02114, USA
| | | |
Collapse
|