1
|
Abstract
Multiple sclerosis is one of the most common autoimmune diseases affecting the central nervous system. Current guidelines characterize multiple sclerosis and related conditions based on clinical, imaging, and body fluid markers. In this review, we describe how laboratory analysis of cerebrospinal fluid is currently performed and discuss new approaches under development for multiple sclerosis diagnostics.
Collapse
Affiliation(s)
- Joshua F Goldsmith
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - A Zara Herskovits
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 2018; 14:2241-2254. [PMID: 30214214 PMCID: PMC6126505 DOI: 10.2147/ndt.s173280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for biomarkers in multiple sclerosis (MS) to make an early diagnosis and monitor its progression. This study was designed to evaluate the value of neurofilament light (NFL) chain levels as cerebrospinal fluid (CSF) or blood biomarker in patients with MS by using a quantitative meta-analysis. METHODS The PubMed, Embase, and Web of Science databases were systematically searched for relevant studies. Articles in English that evaluated the utility of NFL in CSF and blood in the diagnosis of MS were included. Data were extracted by two independent researchers. Mean (± SD) NFL concentration for MS patients and control subjects were extracted. Review Manager version 5.3 software with a continuous-variable random-effects model was used to summarize the diagnostic indexes from eligible studies. The Newcastle-Ottawa Scale was used for assessing the quality and risk of bias of included studies. In addition, subgroup analysis and meta-regression were performed to assess potential heterogeneity sources. RESULTS The meta-analysis included 13 articles containing results from 15 studies. A total of 10 studies measured NFL levels in CSF and five studies measured NFL levels in blood. Data were available on 795 participants in CSF and 1,856 participants in blood. Moreover, CSF NFL in MS patients was higher than that in healthy control groups (pooled standard mean difference [Std.MD]=0.88, 95% CI [0.50, 1.26], P<0.00001) and serum NFL in MS patients was higher than that in control subjects (pooled Std.MD=0.47, 95% CI [0.24, 0.71], P<0.0001). CONCLUSION NFL chain has significantly increased in MS patients, which substantially strengthens the clinical evidence of the NFL in MS. The NFL may be used as a prognostic biomarker to monitor disease progression, disease activity, and treatment efficacy in the future.
Collapse
Affiliation(s)
- Laisheng Cai
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| | - Jingwei Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| |
Collapse
|
3
|
Treatment of progressive multiple sclerosis: Challenges and promising perspectives. Rev Neurol (Paris) 2018; 174:441-448. [DOI: 10.1016/j.neurol.2018.01.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022]
|
4
|
Domingues RB, Fernandes GBP, Leite FBVDM, Tilbery CP, Thomaz RB, Silva GS, Mangueira CLP, Soares CAS. The cerebrospinal fluid in multiple sclerosis: far beyond the bands. EINSTEIN-SAO PAULO 2017; 15:100-104. [PMID: 28444098 PMCID: PMC5433316 DOI: 10.1590/s1679-45082017rw3706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
The cerebrospinal fluid analysis has been employed for supporting multiple sclerosis diagnosis and ruling out the differential diagnoses. The most classical findings reflect the inflammatory nature of the disease, including mild pleocytosis, mild protein increase, intrathecal synthesis of immunoglobulin G, and, most typically, the presence of oligoclonal bands. In recent years, new biomarkers have emerged in the context of multiple sclerosis. The search for new biomarkers reflect the need of a better evaluation of disease activity, disease progression, and treatment efficiency. A more refined evaluation of disease and therapy status can contribute to better therapeutic choices, particularly in escalation of therapies. This is very relevant taking into account the availability of a greater number of drugs for multiple sclerosis treatment in recent years. In this review, we critically evaluate the current literature regarding the most important cerebrospinal fluid biomarkers in multiple sclerosis. The determination of biomarkers levels, such as chemokine ligand 13, fetuin A, and mainly light neurofilament has shown promising results in the evaluation of this disease, providing information that along with clinical and neuroimaging data may contribute to better therapeutic decisions.
Collapse
|
5
|
Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, Dahle C, Vrethem M, Ernerudh J. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur J Neurol 2017; 24:703-712. [PMID: 28261960 DOI: 10.1111/ene.13274] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Improved biomarkers are needed to facilitate clinical decision-making and as surrogate endpoints in clinical trials in multiple sclerosis (MS). We assessed whether neurodegenerative and neuroinflammatory markers in cerebrospinal fluid (CSF) at initial sampling could predict disease activity during 2 years of follow-up in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS. METHODS Using multiplex bead array and enzyme-linked immunosorbent assay, CXCL1, CXCL8, CXCL10, CXCL13, CCL20, CCL22, neurofilament light chain (NFL), neurofilament heavy chain, glial fibrillary acidic protein, chitinase-3-like-1, matrix metalloproteinase-9 and osteopontin were analysed in CSF from 41 patients with CIS or relapsing-remitting MS and 22 healthy controls. Disease activity (relapses, magnetic resonance imaging activity or disability worsening) in patients was recorded during 2 years of follow-up in this prospective longitudinal cohort study. RESULTS In a logistic regression analysis model, NFL in CSF at baseline emerged as the best predictive marker, correctly classifying 93% of patients who showed evidence of disease activity during 2 years of follow-up and 67% of patients who did not, with an overall proportion of 85% (33 of 39 patients) correctly classified. Combining NFL with either neurofilament heavy chain or osteopontin resulted in 87% overall correctly classified patients, whereas combining NFL with a chemokine did not improve results. CONCLUSIONS This study demonstrates the potential prognostic value of NFL in baseline CSF in CIS and relapsing-remitting MS and supports its use as a predictive biomarker of disease activity.
Collapse
Affiliation(s)
- I Håkansson
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Tisell
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - P Cassel
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - P Lundberg
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - C Dahle
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Vrethem
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Bodini B, Calabresi PA. From neurofilament research to multiple sclerosis clinical practice: Where do we stand? Neurology 2017; 88:816-817. [PMID: 28148634 DOI: 10.1212/wnl.0000000000003676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Benedetta Bodini
- From Sorbonne Universités (B.B.), UPMC Paris 06, Institut du Cerveau et de la Moelle Épinière, ICM, Pitié-Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France; and Department of Neurology (P.A.C.), Johns Hopkins Hospital, Baltimore, MD.
| | - Peter Arthur Calabresi
- From Sorbonne Universités (B.B.), UPMC Paris 06, Institut du Cerveau et de la Moelle Épinière, ICM, Pitié-Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France; and Department of Neurology (P.A.C.), Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
7
|
Jones AP, Kermode AG, Lucas RM, Carroll WM, Nolan D, Hart PH. Circulating immune cells in multiple sclerosis. Clin Exp Immunol 2016; 187:193-203. [PMID: 27689339 DOI: 10.1111/cei.12878] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating T and B lymphocytes contribute to the pathogenesis of the neuroinflammatory autoimmune disease, multiple sclerosis (MS). Further progress in the development of MS treatments is dependent upon a greater understanding of the immunological disturbances that underlie the disease. Analyses of circulating immune cells by flow cytometry have revealed MS-associated alterations in the composition and function of T and B cell subsets, including temporal changes associated with disease activity. Disturbances in circulating immune populations reflect those observed in the central nervous system and include skewing towards proinflammatory CD4+ and CD8+ T cells and B cells, greater proportions of follicular T helper cells and functional defects in the corresponding T and B regulatory subsets. Utilizing the analytical power of modern flow cytometers, researchers are now well positioned to monitor immunological changes associated with disease activity or intervention, describe immunological signatures with predictive value and identify targets for therapeutic drug development. This review discusses the contribution of various T and B lymphocyte subsets to MS pathogenesis, provides current and relevant phenotypical descriptions to assist in experimental design and highlights areas of future research.
Collapse
Affiliation(s)
- A P Jones
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| | - A G Kermode
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT
| | - W M Carroll
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - D Nolan
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA.,Immunology Department, Royal Perth Hospital, Perth, WA, Australia
| | - P H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| |
Collapse
|