1
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Nakamura K, Sun Z, Hara-Cleaver C, Bodhinathan K, Avila RL. Natalizumab reduces loss of gray matter and thalamic volume in patients with relapsing-remitting multiple sclerosis: A post hoc analysis from the randomized, placebo-controlled AFFIRM trial. Mult Scler 2024; 30:687-695. [PMID: 38469809 DOI: 10.1177/13524585241235055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Loss of brain gray matter fractional volume predicts multiple sclerosis (MS) progression and is associated with worsening physical and cognitive symptoms. Within deep gray matter, thalamic damage is evident in early stages of MS and correlates with physical and cognitive impairment. Natalizumab is a highly effective treatment that reduces disease progression and the number of inflammatory lesions in patients with relapsing-remitting MS (RRMS). OBJECTIVE To evaluate the effect of natalizumab on gray matter and thalamic atrophy. METHODS A combination of deep learning-based image segmentation and data augmentation was applied to MRI data from the AFFIRM trial. RESULTS This post hoc analysis identified a reduction of 64.3% (p = 0.0044) and 64.3% (p = 0.0030) in mean percentage gray matter volume loss from baseline at treatment years 1 and 2, respectively, in patients treated with natalizumab versus placebo. The reduction in thalamic fraction volume loss from baseline with natalizumab versus placebo was 57.0% at year 2 (p < 0.0001) and 41.2% at year 1 (p = 0.0147). Similar findings resulted from analyses of absolute gray matter and thalamic fraction volume loss. CONCLUSION These analyses represent the first placebo-controlled evidence supporting a role for natalizumab treatment in mitigating gray matter and thalamic fraction atrophy among patients with RRMS. CLINICALTRIALS.GOV IDENTIFIER NCT00027300URL: https://clinicaltrials.gov/ct2/show/NCT00027300.
Collapse
Affiliation(s)
- Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
3
|
Nold AK, Wittayer M, Weber CE, Platten M, Gass A, Eisele P. Short-term brain atrophy evolution after initiation of immunotherapy in a real-world multiple sclerosis cohort. J Neuroimaging 2023; 33:904-908. [PMID: 37491626 DOI: 10.1111/jon.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND PURPOSE In multiple sclerosis (MS), brain atrophy measurements have emerged as an important biomarker reflecting neurodegeneration and disability progression. However, due to several potential confounders, investigation of brain atrophy in clinical routine and even in controlled clinical studies can be challenging. The aim of this study was to investigate the short-term dynamics of brain atrophy development after initiation of disease-modifying therapy (DMT) in a "real-world setting." METHODS In this retrospective study, we included MS patients starting DMT (natalizumab, fingolimod, dimethyl fumarate, or interferon-ß1a) or without DMT, availability of a baseline MRI, and two annual follow-up scans on the same MRI system. Two-timepoint percentage brain volume changes (PBVCs) were calculated. RESULTS Fifty-five MS patients (12 patients starting DMT with natalizumab, 7 fingolimod, 14 dimethyl fumarate, 11 interferon-ß1a, and 11 patients without DMT) were included. We found the highest PBVCs in the first 12 months after initiation of natalizumab treatment. Furthermore, the PBVCs in our study were very much comparable to the results observed by other groups, as well as for fingolimod, dimethyl fumarate, and interferon-ß1a. CONCLUSION We found PBVCs that are comparable to the results of previous studies, suggesting that brain atrophy, assessed on 3D MRI data sets acquired on the same 3T MRI, provides a robust MS biomarker.
Collapse
Affiliation(s)
- Ann-Kathrin Nold
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ. Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
5
|
De Stefano N, Giorgio A, Gentile G, Stromillo ML, Cortese R, Gasperini C, Visconti A, Sormani MP, Battaglini M. Dynamics of pseudo-atrophy in RRMS reveals predominant gray matter compartmentalization. Ann Clin Transl Neurol 2021; 8:623-630. [PMID: 33534940 PMCID: PMC7951094 DOI: 10.1002/acn3.51302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To assess the dynamics of “pseudo‐atrophy,” the accelerated brain volume loss observed after initiation of anti‐inflammatory therapies, in patients with multiple sclerosis (MS). Methods Monthly magnetic resonance imaging (MRI) data of patients from the IMPROVE clinical study (NCT00441103) comparing relapsing‐remitting MS patients treated with interferon beta‐1a (IFNβ‐1a) for 40 weeks versus those receiving placebo (16 weeks) and then IFNβ‐1a (24 weeks) were used to assess percentage of gray (PGMVC) and white matter (PWMVC) volume changes. Comparisons of PGMVC and PWMVC slopes were performed with a mixed effect linear model. In the IFNβ‐1a‐treated arm, a quadratic term was included in the model to evaluate the plateauing effect over 40 weeks. Results Up to week 16, PGMVC was −0.14% per month in the placebo and −0.27% per month in treated patients (P < 0.001). Over the same period, the decrease in PWMVC was −0.067% per month in the placebo and −0.116% per month in treated patients (P = 0.27). Similar changes were found in the group originally randomized to placebo when starting IFNβ‐1a treatment (week 16–40, reliability analysis). In the originally treated group, over 40 weeks, the decrease in PGMVC showed a significant (P < 0.001) quadratic component, indicating a plateauing at week 20. Interpretation Findings reported here add new insights into the complex mechanisms of pseudo‐atrophy and its relation to the compartmentalized inflammation occurring in the GM of MS patients. Ongoing and forthcoming clinical trials including MRI‐derived GM volume loss as an outcome measure need to account for potentially significant GM volume changes as part of the initial treatment effect.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | | | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Cohan SL, Hendin BA, Reder AT, Smoot K, Avila R, Mendoza JP, Weinstock-Guttman B. Interferons and Multiple Sclerosis: Lessons from 25 Years of Clinical and Real-World Experience with Intramuscular Interferon Beta-1a (Avonex). CNS Drugs 2021; 35:743-767. [PMID: 34228301 PMCID: PMC8258741 DOI: 10.1007/s40263-021-00822-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Recombinant interferon (IFN) β-1b was approved by the US Food and Drug Administration as the first disease-modifying therapy (DMT) for multiple sclerosis (MS) in 1993. Since that time, clinical trials and real-world observational studies have demonstrated the effectiveness of IFN therapies. The pivotal intramuscular IFN β-1a phase III trial published in 1996 was the first to demonstrate that a DMT could reduce accumulation of sustained disability in MS. Patient adherence to treatment is higher with intramuscular IFN β-1a, given once weekly, than with subcutaneous formulations requiring multiple injections per week. Moreover, subcutaneous IFN β-1a is associated with an increased incidence of injection-site reactions and neutralizing antibodies compared with intramuscular administration. In recent years, revisions to MS diagnostic criteria have improved clinicians' ability to identify patients with MS and have promoted the use of magnetic resonance imaging (MRI) for diagnosis and disease monitoring. MRI studies show that treatment with IFN β-1a, relative to placebo, reduces T2 and gadolinium-enhancing lesions and gray matter atrophy. Since the approval of intramuscular IFN β-1a, a number of high-efficacy therapies have been approved for MS, though the benefit of these high-efficacy therapies should be balanced against the increased risk of serious adverse events associated with their long-term use. For some subpopulations of patients, including pregnant women, the safety profile of IFN β formulations may provide a particular benefit. In addition, the antiviral properties of IFNs may indicate potential therapeutic opportunities for IFN β in reducing the risk of viral infections such as COVID-19.
Collapse
Affiliation(s)
- Stanley L. Cohan
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR USA
| | | | | | - Kyle Smoot
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR USA
| | | | | | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1010 Main St., 2nd floor, Buffalo, NY, 14202, USA.
| |
Collapse
|
7
|
Pérez-Miralles FC, Río J, Pareto D, Vidal-Jordana À, Auger C, Arrambide G, Castilló J, Tintoré M, Rovira À, Montalban X, Sastre-Garriga J. Adding brain volume measures into response criteria in multiple sclerosis: the Río-4 score. Neuroradiology 2020; 63:1031-1041. [PMID: 33237430 DOI: 10.1007/s00234-020-02604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Brain volume changes (BVC) on therapy in MS are being considered as predictor for treatment response at an individual level. We ought to assess whether adding BVC as a factor to monitor interferon-beta response improves the predictive ability of the (no) evidence of disease activity (EDA-3) and Río score (RS-3) criteria for confirmed disability progression in a historical cohort. METHODS One hundred one patients from an observational cohort treated with interferon-beta were assessed for different cutoff points of BVC (ranged 0.2-1.2%), presence of active lesions (≥ 1 for EDA/≥ 3 for RS), relapses, and 6-month confirmed disability progression (CDP), measured by the Expanded Disability Status Scale, after 1 year. Sensitivity, specificity, and positive and negative predictive values for predicting confirmed disability progression at 4 years in original EDA (EDA-3) and RS (RS-3) as well as EDA and RS including BVC (EDA-4 and RS-4) were compared. RESULTS Adding BVC to EDA slightly increased sensitivity, but not specificity or predictive values, nor the OR for predicting CDP; only EDA-3 showed a trend for predicting CDP (OR 3.701, p = 0.050). Adding BVC to RS-3 (defined as ≥ 2 criteria) helped to improve sensitivity and negative predictive value, and increased OR for predicting CDP using a cutoff of ≤ - 0.86% (RS-3 OR 23.528, p < 0.001; RS-4 for all cutoffs ranged from 15.06 to 32, p < 0.001). RS-4 showed areas under the curve larger than RS-3 for prediction of disability at 4 years. CONCLUSION Addition of BVC to RS improves its prediction of response to interferon-beta.
Collapse
Affiliation(s)
- Francisco Carlos Pérez-Miralles
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jordi Río
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Deborah Pareto
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àngela Vidal-Jordana
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Cristina Auger
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Georgina Arrambide
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joaquín Castilló
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Àlex Rovira
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
8
|
Sastre-Garriga J, Pareto D, Battaglini M, Rocca MA, Ciccarelli O, Enzinger C, Wuerfel J, Sormani MP, Barkhof F, Yousry TA, De Stefano N, Tintoré M, Filippi M, Gasperini C, Kappos L, Río J, Frederiksen J, Palace J, Vrenken H, Montalban X, Rovira À. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat Rev Neurol 2020; 16:171-182. [PMID: 32094485 PMCID: PMC7054210 DOI: 10.1038/s41582-020-0314-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 11/08/2022]
Abstract
Early evaluation of treatment response and prediction of disease evolution are key issues in the management of people with multiple sclerosis (MS). In the past 20 years, MRI has become the most useful paraclinical tool in both situations and is used clinically to assess the inflammatory component of the disease, particularly the presence and evolution of focal lesions - the pathological hallmark of MS. However, diffuse neurodegenerative processes that are at least partly independent of inflammatory mechanisms can develop early in people with MS and are closely related to disability. The effects of these neurodegenerative processes at a macroscopic level can be quantified by estimation of brain and spinal cord atrophy with MRI. MRI measurements of atrophy in MS have also been proposed as a complementary approach to lesion assessment to facilitate the prediction of clinical outcomes and to assess treatment responses. In this Consensus statement, the Magnetic Resonance Imaging in MS (MAGNIMS) study group critically review the application of brain and spinal cord atrophy in clinical practice in the management of MS, considering the role of atrophy measures in prognosis and treatment monitoring and the barriers to clinical use of these measures. On the basis of this review, the group makes consensus statements and recommendations for future research.
Collapse
Affiliation(s)
- Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Deborah Pareto
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Olga Ciccarelli
- NMR Research Unit, University College London Queen Square Institute of Neurology, London, UK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London, UK
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Maria P Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Frederik Barkhof
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London, UK
- Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Tarek A Yousry
- NMR Research Unit, University College London Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, University College London Hospitals National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Gasperini
- Multiple Sclerosis Center, Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Jordi Río
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jette Frederiksen
- Department of Neurology, Rigshospitalet-Glostrup and University of Copenhagen, Glostrup, Denmark
| | - Jackie Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hugo Vrenken
- Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Àlex Rovira
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Andravizou A, Dardiotis E, Artemiadis A, Sokratous M, Siokas V, Tsouris Z, Aloizou AM, Nikolaidis I, Bakirtzis C, Tsivgoulis G, Deretzi G, Grigoriadis N, Bogdanos DP, Hadjigeorgiou GM. Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. AUTO- IMMUNITY HIGHLIGHTS 2019; 10:7. [PMID: 32257063 PMCID: PMC7065319 DOI: 10.1186/s13317-019-0117-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by focal or diffuse inflammation, demyelination, axonal loss and neurodegeneration. Brain atrophy can be seen in the earliest stages of MS, progresses faster compared to healthy adults, and is a reliable predictor of future physical and cognitive disability. In addition, it is widely accepted to be a valid, sensitive and reproducible measure of neurodegeneration in MS. Reducing the rate of brain atrophy has only recently been incorporated as a critical endpoint into the clinical trials of new or emerging disease modifying drugs (DMDs) in MS. With the advent of easily accessible neuroimaging softwares along with the accumulating evidence, clinicians may be able to use brain atrophy measures in their everyday clinical practice to monitor disease course and response to DMDs. In this review, we will describe the different mechanisms contributing to brain atrophy, their clinical relevance on disease presentation and course and the effect of current or emergent DMDs on brain atrophy and neuroprotection.
Collapse
Affiliation(s)
- Athina Andravizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Artemios Artemiadis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias Ave 72-74, 11528 Athens, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Bakirtzis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Andorra M, Nakamura K, Lampert EJ, Pulido-Valdeolivas I, Zubizarreta I, Llufriu S, Martinez-Heras E, Sola-Valls N, Sepulveda M, Tercero-Uribe A, Blanco Y, Saiz A, Villoslada P, Martinez-Lapiscina EH. Assessing Biological and Methodological Aspects of Brain Volume Loss in Multiple Sclerosis. JAMA Neurol 2019; 75:1246-1255. [PMID: 29971335 DOI: 10.1001/jamaneurol.2018.1596] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Before using brain volume loss (BVL) as a marker of therapeutic response in multiple sclerosis (MS), certain biological and methodological issues must be clarified. Objectives To assess the dynamics of BVL as MS progresses and to evaluate the repeatability and exchangeability of BVL estimates with Jacobian Integration (JI) and Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (specifically, the Structural Image Evaluation, Using Normalisation, of Atrophy-Cross-Sectional [SIENA-X] tool or FMRIB's Integrated Registration and Segmentation Tool [FIRST]). Design, Setting, and Participants A cohort of patients who had either clinically isolated syndrome or MS was enrolled from February 2011 through October 2015. All underwent a series of annual magnetic resonance imaging (MRI) scans. Images from 2 cohorts of healthy volunteers were used to evaluate short-term repeatability of the MRI measurements (n = 34) and annual BVL (n = 20). Data analysis occurred from January to May 2017. Main Outcomes and Measures The goodness of fit of different models to the dynamics of BVL throughout the MS disease course was assessed. The short-term test-retest error was used as a measure of JI and FSL repeatability. The correlations (R2) of the changes quantified in the brain using JI and FSL, together with the accuracy of the annual BVL cutoffs to discriminate patients with MS from healthy volunteers, were used to measure compatibility of imaging methods. Results A total of 140 patients with clinically isolated syndrome or MS were enrolled, including 95 women (67.9%); the group had a median (interquartile range) age of 40.7 (33.6-48.1) years. Patients underwent 4 MRI scans with a median (interquartile range) interscan period of 364 (351-379) days. The 34 healthy volunteers (of whom 18 [53%] were women; median [IQR] age, 33.5 [26.2-42.5] years) and 20 healthy volunteers (of whom 10 [50%] were women; median [IQR] age, 33.0 [28.7-39.2] years) underwent 2 MRI scans within a median (IQR) of 24.5 (0.0-74.5) days and 384.5 (366.3-407.8) days for the short-term and long-term MRI follow-up, respectively. The BVL rates were higher in the first 5 years after MS onset (R2 = 0.65 for whole-brain volume change and R2 = 0.52 for gray matter volume change) with a direct association with steroids (β = 0.280; P = .02) and an inverse association with age at MS onset, particularly in the first 5 years (β = 0.015; P = .047). The reproducibility of FSL (SIENA) and JI was similar for whole-brain volume loss, while JI gave more precise, less biased estimates for specific brain regions than FSL (SIENA-X and FIRST). The correlation between whole-brain volume loss using JI and FSL was high (R2 = 0.92), but the same correlations were poor for specific brain regions. The area under curve of the whole-brain volume change to discriminate between patients with MS and healthy volunteers was similar, although the thresholds and accuracy index were distinct for JI and FSL. Conclusions and Relevance The proposed BVL threshold of less than 0.4% per year as a marker of therapeutic efficiency should be reconsidered because of the different dynamics of BVL as MS progresses and because of the limited reproducibility and variability of estimates using different imaging methods.
Collapse
Affiliation(s)
- Magí Andorra
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erika J Lampert
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Cleveland Clinic, Lerner College of Medicine, Cleveland, Ohio
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María Sepulveda
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ana Tercero-Uribe
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Now with Genentech, Inc, South San Francisco, California
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Sotirchos ES, Gonzalez-Caldito N, Dewey BE, Fitzgerald KC, Glaister J, Filippatou A, Ogbuokiri E, Feldman S, Kwakyi O, Risher H, Crainiceanu C, Pham DL, Van Zijl PC, Mowry EM, Reich DS, Prince JL, Calabresi PA, Saidha S. Effect of disease-modifying therapies on subcortical gray matter atrophy in multiple sclerosis. Mult Scler 2019; 26:312-321. [PMID: 30741108 DOI: 10.1177/1352458519826364] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The effects of disease-modifying therapies (DMTs) on region-specific brain atrophy in multiple sclerosis (MS) are unclear. OBJECTIVE To determine the effects of higher versus lower efficacy DMTs on rates of brain substructure atrophy in MS. METHODS A non-randomized, observational cohort of people with MS followed with annual brain magnetic resonance imaging (MRI) was evaluated retrospectively. Whole brain, subcortical gray matter (GM), cortical GM, and cerebral white matter (WM) volume fractions were obtained. DMTs were categorized as higher (DMT-H: natalizumab and rituximab) or lower (DMT-L: interferon-beta and glatiramer acetate) efficacy. Follow-up epochs were analyzed if participants had been on a DMT for ⩾6 months prior to baseline and had at least one follow-up MRI while on DMTs in the same category. RESULTS A total of 86 DMT epochs (DMT-H: n = 32; DMT-L: n = 54) from 78 participants fulfilled the study inclusion criteria. Mean follow-up was 2.4 years. Annualized rates of thalamic (-0.15% vs -0.81%; p = 0.001) and putaminal (-0.27% vs -0.73%; p = 0.001) atrophy were slower during DMT-H compared to DMT-L epochs. These results remained significant in multivariate analyses including demographics, clinical characteristics, and T2 lesion volume. CONCLUSION DMT-H treatment may be associated with slower rates of subcortical GM atrophy, especially of the thalamus and putamen. Thalamic and putaminal volumes are promising imaging biomarkers in MS.
Collapse
Affiliation(s)
- Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Blake E Dewey
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Glaister
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Angeliki Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Ogbuokiri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sydney Feldman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ohemaa Kwakyi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter Risher
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Dzung L Pham
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Peter C Van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.,Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Marciniewicz E, Podgórski P, Pawłowski T, Małyszczak K, Fleischer-Stępniewska K, Knysz B, Waliszewska-Prosół M, Żelwetro A, Rymer W, Inglot M, Ejma M, Sąsiadek M, Bladowska J. Evaluation of brain volume alterations in HCV-infected patients after interferon-free therapy: A pilot study. J Neurol Sci 2019; 399:36-43. [PMID: 30769221 DOI: 10.1016/j.jns.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
The study was performed to evaluate cerebral volume changes in HCV-infected subjects before and after interferon-free therapy with direct-acting antiviral agents (DAA). We aimed also to estimate the impact of successful DAA therapy on the neuropsychological state of patients. Eleven HCV genotype 1 (GT1) patients treated with ombitasvir/paritaprevir (boosted with ritonavir) and dasabuvir, with or without ribavirin underwent brain magnetic resonance (MR) before and 24 weeks after completion of therapy. All patients achieved sustained viral response. Precise automatic parcellation was made using the fully-available software FreeSurfer 6.0. Statistically significant volume deceleration six months after treatment was found in the subcallosal cingulate gyrus, transverse frontopolar gyri and sulci, anterior segment of the circular sulcus of the insula and horizontal ramus of the anterior segment of the lateral sulcus. After DAA therapy we found statistically significant improvement in the performance of all three tasks of the Rey Complex Figure Test that permits the evaluation of different functions (attention, planning, working,memory). Additionally, significant amelioration in Percentage Conceptual Level Responses in The Wisconsin Card Sorting Test (a neurocognitive test for assessing intellectual functioning) was also discovered. Successful interferon-free therapy may lead to transient cerebral atrophy, probably by reducing neuroinflammation and oedema. This is the first pilot study of the alterations in brain volume after successful interferon-free therapy in chronic HCV patients. Longitudinal follow-up study is needed to observe further effects of therapy on cerebral structures volume changes.
Collapse
Affiliation(s)
- Ewelina Marciniewicz
- Department of General Radiology, Interventional Radiology and Neuroradiology, Radiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Przemysław Podgórski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Radiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367 Wroclaw, Poland.
| | - Krzysztof Małyszczak
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367 Wroclaw, Poland
| | - Katarzyna Fleischer-Stępniewska
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiences, Wroclaw Medical University, Koszarowa 5, 51-149 Wroclaw, Poland
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiences, Wroclaw Medical University, Koszarowa 5, 51-149 Wroclaw, Poland
| | | | - Agnieszka Żelwetro
- The Institute of Psychology, University of Wroclaw, J.W. Dawida 1, 50-527 Wroclaw, Poland
| | - Weronika Rymer
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiences, Wroclaw Medical University, Koszarowa 5, 51-149 Wroclaw, Poland.
| | - Małgorzata Inglot
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiences, Wroclaw Medical University, Koszarowa 5, 51-149 Wroclaw, Poland.
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Marek Sąsiadek
- Department of General Radiology, Interventional Radiology and Neuroradiology, Radiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Joanna Bladowska
- Department of General Radiology, Interventional Radiology and Neuroradiology, Radiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
13
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
14
|
Amiri H, de Sitter A, Bendfeldt K, Battaglini M, Gandini Wheeler-Kingshott CAM, Calabrese M, Geurts JJG, Rocca MA, Sastre-Garriga J, Enzinger C, de Stefano N, Filippi M, Rovira Á, Barkhof F, Vrenken H. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neuroimage Clin 2018; 19:466-475. [PMID: 29984155 PMCID: PMC6030805 DOI: 10.1016/j.nicl.2018.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/28/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
Atrophy of the brain grey matter (GM) is an accepted and important feature of multiple sclerosis (MS). However, its accurate measurement is hampered by various technical, pathological and physiological factors. As a consequence, it is challenging to investigate the role of GM atrophy in the disease process as well as the effect of treatments that aim to reduce neurodegeneration. In this paper we discuss the most important challenges currently hampering the measurement and interpretation of GM atrophy in MS. The focus is on measurements that are obtained in individual patients rather than on group analysis methods, because of their importance in clinical trials and ultimately in clinical care. We discuss the sources and possible solutions of the current challenges, and provide recommendations to achieve reliable measurement and interpretation of brain GM atrophy in MS.
Collapse
Key Words
- BET, brain extraction tool
- Brain atrophy
- CNS, central nervous system
- CTh, cortical thickness
- DGM, deep grey matter
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- Magnetic resonance imaging
- Multiple sclerosis
- TE, echo time
- TI, inversion time
- TR, repetition time
- VBM, voxel-based morphometry
- WM, white matter
Collapse
Affiliation(s)
- Houshang Amiri
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexandra de Sitter
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimiliano Calabrese
- Multiple Sclerosis Centre, Neurology Section, Department of Neurosciences, Biomedicine and Movements, University of Verona, Italy
| | - Jeroen J G Geurts
- Anatomy & Neurosciences, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Enzinger
- Department of Neurology & Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Álex Rovira
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Favaretto A, Lazzarotto A, Margoni M, Poggiali D, Gallo P. Effects of disease modifying therapies on brain and grey matter atrophy in relapsing remitting multiple sclerosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40893-017-0033-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Affiliation(s)
- Daniel S Reich
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| | - Claudia F Lucchinetti
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| | - Peter A Calabresi
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| |
Collapse
|
17
|
Yousuf F, Dupuy SL, Tauhid S, Chu R, Kim G, Tummala S, Khalid F, Weiner HL, Chitnis T, Healy BC, Bakshi R. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J Neurol Sci 2017; 383:221-229. [DOI: 10.1016/j.jns.2017.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
|
18
|
Dieleman N, Koek HL, Hendrikse J. Short-term mechanisms influencing volumetric brain dynamics. NEUROIMAGE-CLINICAL 2017; 16:507-513. [PMID: 28971004 PMCID: PMC5609861 DOI: 10.1016/j.nicl.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of pathological processes and may aid in early detection of these diseases. Fluid-restriction, evening MRI, corticosteroids, & antipsychotics decrease volume Fluid-intake, morning MRI, surgical revascularization & medications increase volume Short-term changes within the light of long-term pathological changes should be investigated Short-term changes may introduce bias in longitudinal data
Collapse
Affiliation(s)
- Nikki Dieleman
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
19
|
Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung HP, Havrdova E, Schippling S, Selmaj KW, Traboulsee A, Compston DAS, Margolin DH, Thangavelu K, Chirieac MC, Jody D, Xenopoulos P, Hogan RJ, Panzara MA, Arnold DL. Alemtuzumab CARE-MS II 5-year follow-up: Efficacy and safety findings. Neurology 2017; 89:1117-1126. [PMID: 28835403 PMCID: PMC5595276 DOI: 10.1212/wnl.0000000000004354] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To evaluate 5-year efficacy and safety of alemtuzumab in patients with active relapsing-remitting multiple sclerosis and inadequate response to prior therapy. METHODS In the 2-year Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis (CARE-MS) II study (NCT00548405), alemtuzumab-treated patients received 2 courses (baseline and 12 months later). Patients could enter an extension (NCT00930553), with as-needed alemtuzumab retreatment for relapse or MRI activity. Annualized relapse rate (ARR), 6-month confirmed disability worsening (CDW; ≥1-point Expanded Disability Status Scale [EDSS] score increase [≥1.5 if baseline EDSS = 0]), 6-month confirmed disability improvement (CDI; ≥1-point EDSS decrease [baseline score ≥2.0]), no evidence of disease activity (NEDA), brain volume loss (BVL), and adverse events (AEs) were assessed. RESULTS Most alemtuzumab-treated patients (92.9%) who completed CARE-MS II entered the extension; 59.8% received no alemtuzumab retreatment. ARR was low in each extension year (years 3-5: 0.22, 0.23, 0.18). Through 5 years, 75.1% of patients were free of 6-month CDW; 42.9% achieved 6-month CDI. In years 3, 4, and 5, proportions with NEDA were 52.9%, 54.2%, and 58.2%, respectively. Median yearly BVL remained low in the extension (years 1-5: -0.48%, -0.22%, -0.10%, -0.19%, -0.07%). AE exposure-adjusted incidence rates in the extension were lower than in the core study. Thyroid disorders peaked at year 3, declining thereafter. CONCLUSIONS Alemtuzumab provides durable efficacy through 5 years in patients with an inadequate response to prior therapy in the absence of continuous treatment. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that alemtuzumab provides efficacy and slowing of brain atrophy through 5 years.
Collapse
Affiliation(s)
- Alasdair J Coles
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA.
| | - Jeffrey A Cohen
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Edward J Fox
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Gavin Giovannoni
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Hans-Peter Hartung
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Eva Havrdova
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Sven Schippling
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Krzysztof W Selmaj
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Anthony Traboulsee
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - D Alastair S Compston
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - David H Margolin
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Karthinathan Thangavelu
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Madalina C Chirieac
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Darlene Jody
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Panos Xenopoulos
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Richard J Hogan
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Michael A Panzara
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | - Douglas L Arnold
- From the Department of Clinical Neurosciences (A.J.C., D.A.S.C.), University of Cambridge, UK; Mellen Center (J.A.C.), Cleveland Clinic, OH; MS Clinic of Central Texas (E.J.F.), Central Texas Neurology Consultants, Round Rock; Queen Mary University of London (G.G.), Barts and the London School of Medicine, UK; Department of Neurology and Center for Neuropsychiatry (H.-P.H.), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology and Center for Clinical Neuroscience (E.H.), First Faculty of Medicine, Charles University and General Hospital in Prague, Czech Republic; Neuroimmunology and Multiple Sclerosis Research, Department of Neurology (S.S.), University Hospital Zürich and University of Zürich, Switzerland; Department of Neurology (K.W.S.), Medical University of Łódź, Poland; The University of British Columbia (A.T.), Vancouver, Canada; Sanofi (D.H.M., K.T., M.C.C., D.J., M.A.P.), Cambridge, MA; Envision Scientific Solutions (P.X.), Philadelphia, PA; Envision Scientific Solutions (R.J.H.), Sydney, NSW, Australia; NeuroRx Research (D.L.A.), Montréal; Department of Neurology and Neurosurgery (D.L.A.), Montréal Neurological Institute, McGill University, Québec, Canada. M.A.P. is currently affiliated with Wave Life Sciences, Cambridge, MA
| | | |
Collapse
|
20
|
Lee H, Nakamura K, Narayanan S, Brown R, Chen J, Atkins HL, Freedman MS, Arnold DL. Impact of immunoablation and autologous hematopoietic stem cell transplantation on gray and white matter atrophy in multiple sclerosis. Mult Scler 2017; 24:1055-1066. [DOI: 10.1177/1352458517715811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Immunoablation and autologous hematopoietic stem cell transplantation (IA/aHSCT) halts relapses, white matter (WM) lesion formation, and pathological whole-brain (WB) atrophy in multiple sclerosis (MS) patients. Whether the latter was due to effects on gray matter (GM) or WM warranted further exploration. Objective: To model GM and WM volume changes after IA/aHSCT to further understand the effects seen on WB atrophy. Methods: GM and WM volume changes were calculated from serial baseline and follow-up magnetic resonance imaging (MRI) ranging from 1.5 to 10.5 years in 19 MS patients treated with IA/aHSCT. A mixed-effects model with two predictors (total busulfan dose and baseline T1-weighted WM lesion volume “T1LV”) characterized the time-courses after IA/aHSCT. Results: Accelerated short-term atrophy of 2.1% and 3.2% occurred in GM and WM, respectively, on average. Both busulfan dose and T1LV were significant predictors of WM atrophy, whereas only busulfan was a significant predictor of GM atrophy. Compared to baseline, a significant reduction in GM atrophy, not WM atrophy, was found. The average rates of long-term GM and WM atrophy were −0.18%/year (standard error (SE): 0.083) and −0.07%/year (SE: 0.14), respectively. Conclusion: Chemotherapy-related toxicity affected both GM and WM. WM was further affected by focal T1-weighted lesion-related pathologies. Long-term rates of GM and WM atrophy were comparable to those of normal-aging.
Collapse
Affiliation(s)
- Hyunwoo Lee
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada/Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Robert Brown
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jacqueline Chen
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Harold L Atkins
- Ottawa Hospital Blood and Marrow Transplant Program, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- Department of Medicine (Neurology), The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Dupuy SL, Tauhid S, Hurwitz S, Chu R, Yousuf F, Bakshi R. The Effect of Dimethyl Fumarate on Cerebral Gray Matter Atrophy in Multiple Sclerosis. Neurol Ther 2016; 5:215-229. [PMID: 27744504 PMCID: PMC5130921 DOI: 10.1007/s40120-016-0054-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The objective of this pilot study was to compare cerebral gray matter (GM) atrophy over 1 year in patients starting dimethyl fumarate (DMF) for multiple sclerosis (MS) to that of patients on no disease-modifying treatment (noDMT). DMF is an established therapy for relapsing-remitting (RR) MS. METHODS We retrospectively analyzed 20 patients with RRMS at the start of DMF [age (mean ± SD) 46.1 ± 10.2 years, Expanded Disability Status Scale (EDSS) score 1.1 ± 1.2, timed 25-foot walk (T25FW) 4.6 ± 0.8 s] and eight patients on noDMT (age 42.5 ± 6.6 years, EDSS 1.7 ± 1.1, T25FW 4.4 ± 0.6 s). Baseline and 1-year 3D T1-weighted 3T MRI was processed with automated pipelines (SIENA, FSL-FIRST) to assess percentage whole brain volume change (PBVC) and deep GM (DGM) atrophy. Group differences were assessed by analysis of covariance, with time between MRI scans as a covariate. RESULTS Over 1 year, the DMF group showed a lower rate of whole brain atrophy than the noDMT group (PBVC: -0.37 ± 0.49% vs. -1.04 ± 0.67%, p = 0.005). The DMF group also had less change in putamen volume (-0.06 ± 0.22 vs. -0.32 ± 0.28 ml, p = 0.02). There were no significant on-study differences between groups in caudate, globus pallidus, thalamus, total DGM volume, T2 lesion volume, EDSS, or T25FW (all p > 0.20). CONCLUSIONS These results suggest a treatment effect of DMF on GM atrophy appearing at 1 year after starting therapy. However, due to the retrospective study design and sample size, these findings should be considered preliminary, and require confirmation in future investigations. FUNDING Biogen.
Collapse
Affiliation(s)
- Sheena L Dupuy
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shelley Hurwitz
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Fawad Yousuf
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology and Radiology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Khalid F, Tauhid S, Chua AS, Healy BC, Stankiewicz JM, Weiner HL, Bakshi R. A longitudinal uncontrolled study of cerebral gray matter volume in patients receiving natalizumab for multiple sclerosis. Int J Neurosci 2016; 127:396-403. [PMID: 27143245 DOI: 10.1080/00207454.2016.1185421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Brain atrophy in multiple sclerosis (MS) selectively affects gray matter (GM), which is highly relevant to disability and cognitive impairment. We assessed cerebral GM volume (GMV) during one year of natalizumab therapy. DESIGN/METHODS Patients with relapsing-remitting (n = 18) or progressive (n = 2) MS had MRI ∼1 year apart during natalizumab treatment. At baseline, patients were on natalizumab for (mean ± SD) 16.6 ± 10.9 months with age 38.5 ± 7.4 and disease duration 9.7 ± 4.3 years. RESULTS At baseline, GMV was 664.0 ± 56.4 ml, Expanded Disability Status Scale (EDSS) score was 2.3 ± 2.0, timed 25-foot walk (T25FW) was 6.1±3.4 s; two patients (10%) had gadolinium (Gd)-enhancing lesions. At follow-up, GMV was 663.9 ± 60.2 mL; EDSS was 2.6 ± 2.1 and T25FW was 5.9 ± 2.9 s. One patient had a mild clinical relapse during the observation period (0.052 annualized relapse rate for the entire cohort). No patients had Gd-enhancing lesions at follow-up. Linear mixed-effect models showed no significant change in annualized GMV [estimated mean change per year 0.338 mL, 95% confidence interval -9.66, 10.34, p = 0.94)], GM fraction (p = 0.92), whole brain parenchymal fraction (p = 0.64), T2 lesion load (p = 0.64), EDSS (p = 0.26) or T25FW (p = 0.79). CONCLUSIONS This pilot study shows no GM atrophy during one year of natalizumab MS therapy. We also did not detect any loss of whole brain volume or progression of cerebral T2 hyperintense lesion volume during the observation period. These MRI results paralleled the lack of clinical worsening.
Collapse
Affiliation(s)
- Fariha Khalid
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Shahamat Tauhid
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Alicia S Chua
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Brian C Healy
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA.,c c Biostatistics Center, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - James M Stankiewicz
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Howard L Weiner
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Rohit Bakshi
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA.,b b Laboratory for Neuroimaging Research, Department of Radiology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
23
|
Koudriavtseva T, Mainero C. Brain Atrophy as a Measure of Neuroprotective Drug Effects in Multiple Sclerosis: Influence of Inflammation. Front Hum Neurosci 2016; 10:226. [PMID: 27242489 PMCID: PMC4865512 DOI: 10.3389/fnhum.2016.00226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tatiana Koudriavtseva
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalBoston, MA, USA; Department of Radiology, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
24
|
Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, Pareto D, Rio J, Auger C, Tintoré M, Rovira A, Montalban X. Brain Volume Loss During the First Year of Interferon-Beta Treatment in Multiple Sclerosis: Baseline Inflammation and Regional Brain Volume Dynamics. J Neuroimaging 2016; 26:532-8. [DOI: 10.1111/jon.12337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Francisco Pérez-Miralles
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Deborah Pareto
- Magnetic Resonance Unit, Radiology Department, Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Jordi Rio
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristina Auger
- Magnetic Resonance Unit, Radiology Department, Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Alex Rovira
- Magnetic Resonance Unit, Radiology Department, Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
25
|
Nakamura K, Brown RA, Araujo D, Narayanan S, Arnold DL. Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: implications for monitoring atrophy in clinical studies. Neuroimage Clin 2014; 6:166-70. [PMID: 25379428 PMCID: PMC4215533 DOI: 10.1016/j.nicl.2014.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 11/25/2022]
Abstract
Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful in vivo measure of irreversible tissue loss. These measurements, however, can be influenced by reversible factors such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether an estimate of T2 relaxation time would correlate with brain volume changes induced by physiologically manipulating hydration status. We used a clinically feasible estimate of T2 ("pseudo-T2") computed from a dual turbo spin-echo MRI sequence and correlated pseudo-T2 changes to percent brain volume changes in 12 healthy subjects after dehydration overnight (16-hour thirsting) and rehydration (drinking 1.5 L of water). We found that the brain volume significantly increased between the dehydrated and rehydrated states (mean brain volume change = 0.36%, p = 0.0001) but did not change significantly during the dehydration interval (mean brain volume change = 0.04%, p = 0.57). The changes in brain volume and pseudo-T2 significantly correlated with each other, with marginal and conditional correlations (R (2)) of 0.44 and 0.65, respectively. Our results show that pseudo-T2 may be used in conjunction with the measures of brain volume to distinguish reversible water fluctuations and irreversible brain tissue loss (atrophy) and to investigate disease mechanisms related to neuro-inflammation, e.g., in multiple sclerosis, where edema-related water fluctuations may occur with disease activity and anti-inflammatory treatment.
Collapse
Affiliation(s)
- Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Robert A. Brown
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - David Araujo
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Douglas L. Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
26
|
Nakamura K, Guizard N, Fonov VS, Narayanan S, Collins DL, Arnold DL. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. Neuroimage Clin 2013; 4:10-7. [PMID: 24266007 PMCID: PMC3830061 DOI: 10.1016/j.nicl.2013.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing-remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4-5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials.
Collapse
Affiliation(s)
- Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Nicolas Guizard
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Vladimir S. Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| | - D. Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Douglas L. Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| |
Collapse
|
27
|
Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations. Mult Scler Int 2013; 2013:627870. [PMID: 23878736 PMCID: PMC3708448 DOI: 10.1155/2013/627870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022] Open
Abstract
It is abundantly clear that there is extensive gray matter pathology occurring in multiple sclerosis. While attention to gray matter pathology was initially limited to studies of autopsy specimens and biopsies, the development of new MRI techniques has allowed assessment of gray matter pathology in vivo. Current MRI techniques allow the direct visualization of gray matter demyelinating lesions, the quantification of diffuse damage to normal appearing gray matter, and the direct measurement of gray matter atrophy. Gray matter demyelination (both focal and diffuse) and gray matter atrophy are found in the very earliest stages of multiple sclerosis and are progressive over time. Accumulation of gray matter damage has substantial impact on the lives of multiple sclerosis patients; a growing body of the literature demonstrates correlations between gray matter pathology and various measures of both clinical disability and cognitive impairment. The effect of disease modifying therapies on the rate accumulation of gray matter pathology in MS has been investigated. This review focuses on the neuroimaging of gray matter pathology in MS, the effect of the accumulation of gray matter pathology on clinical and cognitive disability, and the effect of disease-modifying agents on various measures of gray matter damage.
Collapse
|
28
|
Zivadinov R, Bergsland N, Dolezal O, Hussein S, Seidl Z, Dwyer MG, Vaneckova M, Krasensky J, Potts JA, Kalincik T, Havrdová E, Horáková D. Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol 2013; 34:1931-9. [PMID: 23578679 DOI: 10.3174/ajnr.a3503] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Pathologic changes in GM have an important role in MS. We investigated the association between SDGM and cortical volume changes and disability progression in early RRMS. MATERIALS AND METHODS One hundred eighty patients with RRMS had clinical assessment during 5 years and were divided into those with or without SDP at 5 years by the usual definition in treatment trials. The number of available MR imaging scans at various time points was the following: at baseline, 178; and at 6 months, 172; at 12 months, 175; at 24 months, 155; at 36 months, 160; at 48 months, 158; and at 60 months, 162, respectively. Longitudinal changes in cortical, GM, and WM volume were calculated by using the direct method. RESULTS At 5 years, 90 patients with RRMS experienced SDP and 90 had stable disease. At baseline, patients with SDP had longer disease duration, greater T2-lesion volume, and smaller whole-brain, WM, cortical, and SDGM volume (P < .01). At 5 years, patients with SDP had significantly greater percentage decreases from baseline compared with those without SDP in the volume of the whole brain (P < .0001), cortex (P = .001), GM (P = .003), and thalamus (P = .01). In patients who developed SDP at 5 years and those who did not, mixed-effect models, adjusted for age, disease duration, and change of the treatment status, showed significant interactions between SDP status at 5 years and changes with time in whole-brain, cortical, lateral ventricle (all P < .001), thalamus (P = .006), and total SDGM (P = .0095) volume. CONCLUSIONS SDP is associated with progression of cortical, central, and thalamic atrophy in early RRMS during 5 years.
Collapse
|
29
|
Borges IT, Shea CD, Ohayon J, Jones BC, Stone RD, Ostuni J, Shiee N, McFarland H, Bielekova B, Reich DS. The effect of daclizumab on brain atrophy in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2013; 2:133-140. [PMID: 23580931 DOI: 10.1016/j.msard.2012.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Daclizumab is a monoclonal antibody that reduces inflammation in multiple sclerosis (MS). Through a retrospective analysis, our objective was to determine whether daclizumab treatment reduces the rate of brain structure atrophy in comparison to a mixture of other disease-modifying therapies (mainly different interferon β preparations). We analyzed MRI examinations (1332 scans from 70 MS cases) obtained between 2000 and 2011 in a single center and processed with an automated brain segmentation method. We used mixed-effects multivariable linear regression models to determine whether a median of 4.3 years of daclizumab therapy in 26 patients altered rates of brain-volume change, controlling for variations in MRI protocol. The control group consisted of 44 patients not treated with daclizumab. We found that supratentorial brain volume declined by 5.17 ml per year (95% confidence limits: 3.58-6.77) off daclizumab therapy. On daclizumab, the annual rate of volume loss decreased to 3.72 ml (p=0.01). The rate of ventricular enlargement decreased from 1.26 to 0.42 ml per year (p<0.001). Focused analysis suggests that reduction in gray matter atrophy rate most likely underlies these results. In summary, in this retrospective analysis, daclizumab therapy substantially decreased the rate of brain atrophy in relapsing-remitting MS in comparison to other disease-modifying therapies, predominantly interferon β.
Collapse
Affiliation(s)
- Isabela T Borges
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bimonthly Evolution of Cortical Atrophy in Early Relapsing-Remitting Multiple Sclerosis over 2 Years: A Longitudinal Study. Mult Scler Int 2013; 2013:231345. [PMID: 23365753 PMCID: PMC3556847 DOI: 10.1155/2013/231345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 12/01/2012] [Accepted: 12/15/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated the evolution of cortical atrophy in patients with early relapsing-remitting (RR) multiple sclerosis (MS) and its association with lesion volume (LV) accumulation and disability progression. 136 of 181 RRMS patients who participated in the Avonex-Steroids-Azathioprine study were assessed bimonthly for clinical and MRI outcomes over 2 years. MS patients with disease duration (DD) at baseline of ≤24 months were classified in the early group (DD of 1.2 years, n = 37), while patients with DD > 24 months were classified in the late group (DD of 7.1 years, n = 99). Mixed effect model analysis was used to investigate the associations. Significant changes in whole brain volume (WBV) (P < 0.001), cortical volume (CV) (P < 0.001), and in T2-LV (P < 0.001) were detected. No significant MRI percent change differences were detected between early and late DD groups over 2 years, except for increased T2-LV accumulation between baseline and year 2 in the early DD group (P < 0.01). No significant associations were found between changes in T2-LV and CV over the followup. Change in CV was related to the disability progression over the 2 years, after adjusting for DD (P = 0.01). Significant cortical atrophy, independent of T2-LV accumulation, occurs in early RRMS over 2 years, and it is associated with the disability progression.
Collapse
|