1
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
2
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
3
|
Hemond CC, Baek J, Ionete C, Reich DS. Paramagnetic rim lesions are associated with pathogenic CSF profiles and worse clinical status in multiple sclerosis: A retrospective cross-sectional study. Mult Scler 2022; 28:2046-2056. [PMID: 35748669 PMCID: PMC9588517 DOI: 10.1177/13524585221102921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Paramagnetic rims have been observed as a feature of some multiple sclerosis (MS) lesions on susceptibility-sensitive magnetic resonance imaging (MRI) and indicate compartmentalized inflammation. OBJECTIVE To investigate clinical, MRI, and intrathecal (cerebrospinal fluid, CSF) associations of paramagnetic rim lesions (PRLs) using 3T MRI in MS. METHODS This is a retrospective, cross-sectional analysis. All patients underwent 3T MRI using a T2*-weighted sequence with susceptibility postprocessing (susceptibility-weighted angiography (SWAN) protocol, GE). SWAN-derived filtered-phase maps and corresponding T2-FLAIR images were manually reviewed to determine PRL. Descriptive statistics, t-tests, and regression determined demographic, clinical, MRI, and CSF associations with PRL. RESULTS A total of 147 MS patients were included; 79 of whom had available CSF. Forty-three percent had at least one PRL. PRL status (presence/absence) did not vary by sex or Expanded Disability Status Scale (EDSS) but was associated with younger age, shorter disease duration, worse disease severity, high-efficacy therapy use, and poorer dexterity, as well as lower age-adjusted brain volumes and cognitive processing speeds. PRL status was moreover associated with blood-brain barrier disruption as determined by pathologically elevated albumin quotient. Sensitivity analyses remained supportive of these findings. CONCLUSION PRLs, an emerging noninvasive biomarker of chronic neuroinflammation, are confirmed to be associated with greater disease severity and newly shown to be preliminarily associated with blood-brain barrier disruption.
Collapse
Affiliation(s)
- Christopher C. Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Jonggyu Baek
- Department of Population and Quantitative Health, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Carolina Ionete
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Daniel S. Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Relevance of Pathogenetic Mechanisms to Clinical Effectiveness of B-Cell-Depleting Monoclonal Antibodies in Multiple Sclerosis. J Clin Med 2022; 11:jcm11154288. [PMID: 35893382 PMCID: PMC9332715 DOI: 10.3390/jcm11154288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Evidence of the effectiveness of B-cell-depleting monoclonal antibodies (mAbs) in multiple sclerosis (MS) prompted a partial revisitation of the pathogenetic paradigm of the disease, which was, so far, considered a T-cell-mediated autoimmune disorder. Mechanisms underlying the efficacy of B-cell-depleting mAbs in MS are still unknown. However, they likely involve the impairment of pleiotropic B-cell functions different from antibody secretion, such as their role as antigen-presenting cells during both the primary immune response in the periphery and the secondary response within the central nervous system (CNS). A potential impact of B-cell-depleting mAbs on inflammation compartmentalised within the CNS was also suggested, but little is known about the mechanism underlying this latter phenomenon as no definite evidence was provided so far on the ability of mAbs to cross the blood–brain barrier and reliable biomarkers of compartmentalised inflammation are lacking. The present paper briefly summarises the immunopathogenesis of MS with a focus on onset of autoimmunity and compartmentalisation of the immune response; mechanisms mediating B-cell depletion and underlying the effectiveness of B-cell-depleting mAbs are also discussed.
Collapse
|
5
|
Mariottini A, Bulgarini G, Forci B, Innocenti C, Mealli F, Mattei A, Ceccarelli C, Repice AM, Barilaro A, Mechi C, Saccardi R, Massacesi L. Autologous hematopoietic stem cell transplantation vs low-dose immunosuppression in secondary-progressive multiple sclerosis. Eur J Neurol 2022; 29:1708-1718. [PMID: 35146841 PMCID: PMC9306891 DOI: 10.1111/ene.15280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Background and purpose Effectiveness of autologous haematopoietic stem cell transplantation (AHSCT) in relapsing–remitting multiple sclerosis (MS) is well known, but in secondary–progressive (SP)‐MS it is still controversial. Therefore, AHSCT activity was evaluated in SP‐MS using low‐dose immunosuppression with cyclophosphamide (Cy) as a comparative treatment. Methods In this retrospective monocentric 1:2 matched study, SP‐MS patients were treated with intermediate‐intensity AHSCT (cases) or intravenous pulses of Cy (controls) at a single academic centre in Florence. Controls were selected according to baseline characteristics adopting cardinality matching after trimming on the estimated propensity score. Kaplan–Meier and Cox analyses were used to estimate survival free from relapses (R‐FS), survival free from disability progression (P‐FS), and no evidence of disease activity 2 (NEDA‐2). Results A total of 93 SP‐MS patients were included: 31 AHSCT, 62 Cy. Mean follow‐up was 99 months in the AHSCT group and 91 months in the Cy group. R‐FS was higher in AHSCT compared to Cy patients: at Year 5, 100% versus 52%, respectively (p < 0.0001). P‐FS did not differ between the groups (at Year 5: 70% in AHSCT and 81% in Cy, p = 0.572), nor did NEDA‐2 (p = 0.379). A sensitivity analysis including only the 31 “best‐matched” controls confirmed these results. Three neoplasms (2 Cy, 1 AHSCT) and two fatalities (2 Cy) occurred. Conclusions This study provides Class III evidence, in SP‐MS, on the superior effectiveness of AHSCT compared to Cy on relapse activity, without differences on disability accrual. Although the suppression of relapses was observed in the AHSCT group only, AHSCT did not show advantages over Cy on disability, suggesting that in SP‐MS disability progression becomes based more on noninflammatory neurodegeneration than on inflammation.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Giovanni Bulgarini
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy
| | - Benedetta Forci
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy
| | - Chiara Innocenti
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Fabrizia Mealli
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy.,Florence Centre for Data Science, Florence, Italy
| | - Alessandra Mattei
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy.,Florence Centre for Data Science, Florence, Italy
| | - Chiara Ceccarelli
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Claudia Mechi
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| |
Collapse
|
6
|
Cleland NRW, Al-Juboori SI, Dobrinskikh E, Bruce KD. Altered substrate metabolism in neurodegenerative disease: new insights from metabolic imaging. J Neuroinflammation 2021; 18:248. [PMID: 34711251 PMCID: PMC8555332 DOI: 10.1186/s12974-021-02305-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS), are relatively common and devastating neurological disorders. For example, there are 6 million individuals living with AD in the United States, a number that is projected to grow to 14 million by the year 2030. Importantly, AD, PD and MS are all characterized by the lack of a true disease-modifying therapy that is able to reverse or halt disease progression. In addition, the existing standard of care for most NDs only addresses the symptoms of the disease. Therefore, alternative strategies that target mechanisms underlying the neuropathogenesis of disease are much needed. Recent studies have indicated that metabolic alterations in neurons and glia are commonly observed in AD, PD and MS and lead to changes in cell function that can either precede or protect against disease onset and progression. Specifically, single-cell RNAseq studies have shown that AD progression is tightly linked to the metabolic phenotype of microglia, the key immune effector cells of the brain. However, these analyses involve removing cells from their native environment and performing measurements in vitro, influencing metabolic status. Therefore, technical approaches that can accurately assess cell-specific metabolism in situ have the potential to be transformative to our understanding of the mechanisms driving AD. Here, we review our current understanding of metabolism in both neurons and glia during homeostasis and disease. We also evaluate recent advances in metabolic imaging, and discuss how emerging modalities, such as fluorescence lifetime imaging microscopy (FLIM) have the potential to determine how metabolic perturbations may drive the progression of NDs. Finally, we propose that the temporal, regional, and cell-specific characterization of brain metabolism afforded by FLIM will be a critical first step in the rational design of metabolism-focused interventions that delay or even prevent NDs.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kimberley D Bruce
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
7
|
Clarelli F, Assunta Rocca M, Santoro S, De Meo E, Ferrè L, Sorosina M, Martinelli Boneschi F, Esposito F, Filippi M. Assessment of the genetic contribution to brain magnetic resonance imaging lesion load and atrophy measures in multiple sclerosis patients. Eur J Neurol 2021; 28:2513-2522. [PMID: 33864731 DOI: 10.1111/ene.14872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 04/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) susceptibility is influenced by genetics; however, little is known about genetic determinants of disease expression. We aimed at assessing genetic factors influencing quantitative neuroimaging measures in two cohorts of progressive MS (PMS) and relapsing-remitting MS (RRMS) patients. METHODS Ninety-nine PMS and 214 RRMS patients underwent a 3-T brain magnetic resonance imaging (MRI) scan, with the measurement of five MRI metrics including T2 lesion volumes and measures of white matter, grey matter, deep grey matter, and hippocampal volumes. A candidate pathway strategy was adopted; gene set analysis was carried out to estimate cumulative contribution of genes to MRI phenotypes, adjusting for relevant confounders, followed by single nucleotide polymorphism (SNP) regression analysis. RESULTS Seventeen Kyoto Encyclopedia of Genes and Genomes pathways and 42 Gene Ontology (GO) terms were tested. We additionally included in the analysis genes with enriched expression in brain cells. Gene set analysis revealed a differential pattern of association across the two cohorts, with processes related to sodium homeostasis being associated with grey matter volume in PMS (p = 0.002), whereas inflammatory-related GO terms such as adaptive immune response and regulation of inflammatory response appeared to be associated with T2 lesion volume in RRMS (p = 0.004 and p = 0.008, respectively). As for SNPs, the rs7104613T mapping to SPON1 gene was associated with reduced deep grey matter volume (β = -0.731, p = 3.2*10-7 ) in PMS, whereas we found evidence of association between white matter volume and rs740948A mapping to SEMA3A gene (β = 22.04, p = 5.5*10-6 ) in RRMS. CONCLUSIONS Our data suggest a different pattern of associations between MRI metrics and functional processes across MS disease courses, suggesting different phenomena implicated in MS.
Collapse
Affiliation(s)
- Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ermelinda De Meo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Martinelli Boneschi
- Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit and MS Centre, Foundation IRCCS Ca, Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Silva BA, Ferrari CC. Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target? Rev Neurosci 2019; 30:221-232. [PMID: 30048237 DOI: 10.1515/revneuro-2018-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods ('relapsing-remitting') that can evolve to a 'secondary progressive' form or persistent progression from the onset of the disease ('primary progressive'). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina, e-mail:
| | - Carina Cintia Ferrari
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
9
|
Hemond CC, Healy BC, Tauhid S, Mazzola MA, Quintana FJ, Gandhi R, Weiner HL, Bakshi R. MRI phenotypes in MS: Longitudinal changes and miRNA signatures. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e530. [PMID: 30800720 PMCID: PMC6384020 DOI: 10.1212/nxi.0000000000000530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Objective To classify and immunologically characterize persons with MS based on brain lesions and atrophy and their associated microRNA profiles. Methods Cerebral T2-hyperintense lesion volume (T2LV) and brain parenchymal fraction (BPF) were quantified and used to define MRI phenotypes as follows: type I: low T2LV, low atrophy; type II: high T2LV, low atrophy; type III: low T2LV, high atrophy; type IV: high T2LV, high atrophy, in a large cross-sectional cohort (n = 1,088) and a subset with 5-year lngitudinal follow-up (n = 153). Serum miRNAs were assessed on a third MS cohort with 2-year MRI phenotype stability (n = 98). Results One-third of the patients had lesion-atrophy dissociation (types II or III) in both the cross-sectional and longitudinal cohorts. At 5 years, all phenotypes had progressive atrophy (p < 0.001), disproportionally in type II (BPF -2.28%). Only type IV worsened in physical disability. Types I and II showed a 5-year MRI phenotype conversion rate of 33% and 46%, whereas III and IV had >90% stability. Type II switched primarily to IV (91%); type I switched primarily to II (47%) or III (37%). Baseline higher age (p = 0.006) and lower BPF (p < 0.001) predicted 5-year phenotype conversion. Each MRI phenotype demonstrated an miRNA signature whose underlying biology implicates blood-brain barrier pathology: hsa.miR.22.3p, hsa.miR.361.5p, and hsa.miR.345.5p were the most valid differentiators of MRI phenotypes. Conclusions MRI-defined MS phenotypes show high conversion rates characterized by the continuation of either predominant neurodegeneration or inflammation and support the partial independence of these 2 measures. MicroRNA signatures of these phenotypes suggest a role for blood-brain barrier integrity.
Collapse
Affiliation(s)
- Christopher C Hemond
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Brian C Healy
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Shahamat Tauhid
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Maria A Mazzola
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Francisco J Quintana
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Roopali Gandhi
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Howard L Weiner
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| | - Rohit Bakshi
- Departments of Neurology (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.) and Department of Radiology (R.B.); Brigham and Women's Hospital (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Laboratory for Neuroimaging Research (C.C.H., S.T., R.H.); Partners Multiple Sclerosis Center (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); Ann Romney Center for Neurologic Diseases (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W, R.B.); and Harvard Medical School (C.C.H., B.C.H., S.T., M.A.M., F.J.Q., R.G., H.L.W., R.B.), Boston, MA
| |
Collapse
|
10
|
Petracca M, Margoni M, Bommarito G, Inglese M. Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurol Ther 2018; 7:265-285. [PMID: 29956263 PMCID: PMC6283788 DOI: 10.1007/s40120-018-0103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Margoni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiple Sclerosis Centre, Department of Neurosciences DNS, University Hospital, University of Padua, Padua, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy.
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Estudio del estatus laboral y el nivel socioeconómico en personas con esclerosis múltiple en 2 centros de Buenos Aires. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.neuarg.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Beier M, Gromisch ES, Hughes AJ, Alschuler KN, Madathil R, Chiaravalloti N, Foley FW. Proposed cut scores for tests of the Brief International Cognitive Assessment of Multiple Sclerosis (BICAMS). J Neurol Sci 2017; 381:110-116. [DOI: 10.1016/j.jns.2017.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
|
13
|
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 2017; 140:527-546. [PMID: 27794524 DOI: 10.1093/brain/aww258] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022] Open
Abstract
During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved in progressive multiple sclerosis, correlations between histopathology and magnetic resonance imaging studies, along with possible new therapeutic approaches.
Collapse
|
14
|
Pérez-Cerdá F, Sánchez-Gómez MV, Matute C. The link of inflammation and neurodegeneration in progressive multiple sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0012-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Tramacere I, Benedetti MD, Capobussi M, Castellini G, Citterio A, Del Giovane C, Frau S, Gonzalez-Lorenzo M, La Mantia L, Moja L, Nuzzo S, Filippini G. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Hippokratia 2016. [DOI: 10.1002/14651858.cd012186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Irene Tramacere
- Fondazione IRCCS Istituto Neurologico Carlo Besta; Neuroepidemiology Unit; Via Giovanni Celoria, 11 Milan Italy 20133
| | - Maria Donata Benedetti
- Azienda Ospedaliera Universitaria Integrata; UOC Neurologia B - Policlinico Borgo Roma; Piazzale La Scuro , 10 Verona Verona Italy 37135
| | - Matteo Capobussi
- University of Milan; Department of Biomedical Sciences for Health; Via Pascal, 36 Milan Italy 20100
| | - Greta Castellini
- University of Milan; Department of Biomedical Sciences for Health; Via Pascal, 36 Milan Italy 20100
- IRCCS Galeazzi Orthopaedic Institute; Unit of Clinical Epidemiology; Milan Italy
| | - Antonietta Citterio
- IRCCS National Neurological Institute C. Mondino; Scientific Direction; Via Mondino 2 Pavia Italy 27100
| | - Cinzia Del Giovane
- University of Modena and Reggio Emilia; Italian Cochrane Centre, Department of Diagnostic, Clinical and Public Health Medicine; Modena Italy
| | | | - Marien Gonzalez-Lorenzo
- University of Milan; Department of Biomedical Sciences for Health; Via Pascal, 36 Milan Italy 20100
| | - Loredana La Mantia
- IRCCS. Santa Maria Nascente - Fondazione Don Gnocchi; Unit of Neurorehabilitation - Multiple Sclerosis Center; Via Capecelatro, 66 Milan Italy 20148
| | - Lorenzo Moja
- University of Milan; Department of Biomedical Sciences for Health; Via Pascal, 36 Milan Italy 20100
- IRCCS Galeazzi Orthopaedic Institute; Clinical Epidemiology Unit; Milan Italy
| | - Sara Nuzzo
- Fondazione IRCCS. Istituto Neurologico Carlo Besta; Via Celoria, 11 Milan Italy 20133
| | - Graziella Filippini
- Fondazione IRCCS. Istituto Neurologico Carlo Besta; Scientific Direction; via Celoria, 11 Milan Italy 20133
| |
Collapse
|
16
|
Koudriavtseva T, Mainero C. Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: intercorrelated manifestations of the immune response. Neural Regen Res 2016; 11:1727-1730. [PMID: 28123401 PMCID: PMC5204213 DOI: 10.4103/1673-5374.194804] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory-demyelinating disorder of the central nervous system, with a strong neurodegenerative component. The question whether neurodegeneration in MS is independent or related to neuroinflammation has been long debated, but not yet fully clarified. Furthermore, little is still known on how neuroinflammation and neurodegeneration in MS are related to potential regenerative processes. In this perspective, we briefly discuss main clinical, pathological and experimental evidence on the relationship between neuroinflammation and neurodegeneration in MS, and on their connection with regeneration. We discuss that these processes in MS might represent intercorrelated manifestations of the immune response, especially of the innate immunity.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|