1
|
Sedaghat S, Jang H, Athertya JS, Groezinger M, Corey-Bloom J, Du J. The signal intensity variation of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) as a potential biomarker for patients' disability: A feasibility study. Front Neurosci 2023; 17:1145251. [PMID: 36992852 PMCID: PMC10040653 DOI: 10.3389/fnins.2023.1145251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Although many lesion-based MRI biomarkers in multiple sclerosis (MS) patients were investigated, none of the previous studies dealt with the signal intensity variations (SIVs) of MS lesions. In this study, the SIVs of MS lesions on direct myelin imaging and standard clinical sequences as possible MRI biomarkers for disability in MS patients were assessed. Methods Twenty seven MS patients were included in this prospective study. IR-UTE, FLAIR, and MPRAGE sequences were employed on a 3T scanner. Regions of interest (ROIs) were manually drawn within the MS lesions, and the cerebrospinal fluid (CSF) and signal intensity ratios (SIR) were calculated from the derived values. Variations coefficients were determined from the standard deviations (Coeff 1) and the absolute differences (Coeff 2) of the SIRs. Disability grade was assessed by the expanded disability status scale (EDSS). Cortical/gray matter, subcortical, infratentorial, and spinal lesions were excluded. Results The mean diameter of the lesions was 7.8 ± 1.97 mm, while the mean EDSS score was 4.5 ± 1.73. We found moderate correlations between the EDSS and Coeff 1 and 2 on IR-UTE and MPRAGE images. Accordingly, Pearson's correlations on IR-UTE were R = 0.51 (p = 0.007) and R = 0.49 (p = 0.01) for Coeff 1 and 2, respectively. For MPRAGE, Pearson's correlations were R = 0.5 (p = 0.008) and R = 0.48 (p = 0.012) for Coeff 1 and 2, respectively. For FLAIR, only poor correlations could be found. Conclusion The SIVs of MS lesions on IR-UTE and MPRAGE images, assessed by Coeff 1 and 2, could be used as novel potential MRI biomarkers for patients' disability.
Collapse
Affiliation(s)
- Sam Sedaghat
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- University Hospital Heidelberg, Heidelberg, Germany
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
2
|
Collorone S, Prados F, Kanber B, Cawley NM, Tur C, Grussu F, Solanky BS, Yiannakas M, Davagnanam I, Wheeler-Kingshott CAMG, Barkhof F, Ciccarelli O, Toosy AT. Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event. Brain 2021; 144:1409-1421. [PMID: 33903905 PMCID: PMC8219367 DOI: 10.1093/brain/awab043] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
In early multiple sclerosis, a clearer understanding of normal-brain tissue microstructural and metabolic abnormalities will provide valuable insights into its pathophysiology. We used multi-parametric quantitative MRI to detect alterations in brain tissues of patients with their first demyelinating episode. We acquired neurite orientation dispersion and density imaging [to investigate morphology of neurites (dendrites and axons)] and 23Na MRI (to estimate total sodium concentration, a reflection of underlying changes in metabolic function). In this cross-sectional study, we enrolled 42 patients diagnosed with clinically isolated syndrome or multiple sclerosis within 3 months of their first demyelinating event and 16 healthy controls. Physical and cognitive scales were assessed. At 3 T, we acquired brain and spinal cord structural scans, and neurite orientation dispersion and density imaging. Thirty-two patients and 13 healthy controls also underwent brain 23Na MRI. We measured neurite density and orientation dispersion indices and total sodium concentration in brain normal-appearing white matter, white matter lesions, and grey matter. We used linear regression models (adjusting for brain parenchymal fraction and lesion load) and Spearman correlation tests (significance level P ≤ 0.01). Patients showed higher orientation dispersion index in normal-appearing white matter, including the corpus callosum, where they also showed lower neurite density index and higher total sodium concentration, compared with healthy controls. In grey matter, compared with healthy controls, patients demonstrated: lower orientation dispersion index in frontal, parietal and temporal cortices; lower neurite density index in parietal, temporal and occipital cortices; and higher total sodium concentration in limbic and frontal cortices. Brain volumes did not differ between patients and controls. In patients, higher orientation dispersion index in corpus callosum was associated with worse performance on timed walk test (P = 0.009, B = 0.01, 99% confidence interval = 0.0001 to 0.02), independent of brain and lesion volumes. Higher total sodium concentration in left frontal middle gyrus was associated with higher disability on Expanded Disability Status Scale (rs = 0.5, P = 0.005). Increased axonal dispersion was found in normal-appearing white matter, particularly corpus callosum, where there was also axonal degeneration and total sodium accumulation. The association between increased axonal dispersion in the corpus callosum and worse walking performance implies that morphological and metabolic alterations in this structure could mechanistically contribute to disability in multiple sclerosis. As brain volumes were neither altered nor related to disability in patients, our findings suggest that these two advanced MRI techniques are more sensitive at detecting clinically relevant pathology in early multiple sclerosis.
Collapse
Affiliation(s)
- Sara Collorone
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Niamh M Cawley
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing (CMIC), Department of Computer Sciences, University College London, London, UK
| | - Bhavana S Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Indran Davagnanam
- Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, The Netherlands.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Ahmed T Toosy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
3
|
De Lury A, Bisulca J, Coyle PK, Peyster R, Bangiyev L, Duong TQ. MRI features associated with rapid disease activity in clinically isolated syndrome patients at high risk for multiple sclerosis. Mult Scler Relat Disord 2020; 41:101985. [PMID: 32087591 DOI: 10.1016/j.msard.2020.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Abstract
Clinically isolated syndrome (CIS) is a central nervous system inflammatory and demyelinating event that lasts at least 24 h and can represent the first episode of relapsing-remitting multiple sclerosis. MRI is an important imaging tool in the diagnosis and longitudinal monitoring of CIS progression. Accurate differential diagnosis of high-risk versus low-risk CIS is important because high-risk CIS patients could be treated early. Although a few studies have previously characterized CIS and explored possible imaging predictors of CIS conversion to MS, it remains unclear which amongst the commonly measured MRI features, if any, are good predictors of rapid disease progression in CIS patients. The goal of this review paper is to identify MRI features in high-risk CIS patients that are associated with rapid disease activity within 5 years as measured by clinical disability.
Collapse
Affiliation(s)
- Amy De Lury
- Departments of Radiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - Joseph Bisulca
- Departments of Radiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - Patricia K Coyle
- Departments of Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - Robert Peyster
- Departments of Radiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - Lev Bangiyev
- Departments of Radiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - Tim Q Duong
- Departments of Radiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA; Departments of Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, New York, 11794, USA.
| |
Collapse
|
4
|
Boffa G, Tacchino A, Sbragia E, Schiavi S, Droby A, Piaggio N, Bommarito G, Girardi G, Mancardi GL, Brichetto G, Inglese M. Preserved brain functional plasticity after upper limb task‐oriented rehabilitation in progressive multiple sclerosis. Eur J Neurol 2019; 27:77-84. [DOI: 10.1111/ene.14059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
- G. Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
| | - A. Tacchino
- Scientific Research Area Italian Multiple Sclerosis Foundation Genoa Italy
| | - E. Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
| | - S. Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
| | - A. Droby
- Department of Neurology and Neuroscience Icahn School of Medicine at Mount Sinai New York New York USA
| | - N. Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
| | - G. Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
| | - G. Girardi
- Scientific Research Area Italian Multiple Sclerosis Foundation Genoa Italy
| | - G. L. Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
- IRCCS Istituti Clinici Scientifici Maugeri Pavia Italy
- Ospedale Policlinico San Martino-IRCCS Genoa Italy
| | - G. Brichetto
- Scientific Research Area Italian Multiple Sclerosis Foundation Genoa Italy
| | - M. Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenovaGenoaItaly
- Department of Neurology and Neuroscience Icahn School of Medicine at Mount Sinai New York New York USA
- Ospedale Policlinico San Martino-IRCCS Genoa Italy
| |
Collapse
|
5
|
Chouteau R, Combès B, Bannier E, Snoussi H, Ferré JC, Barillot C, Edan G, Sauleau P, Kerbrat A. Joint assessment of brain and spinal cord motor tract damage in patients with early RRMS: predominant impact of spinal cord lesions on motor function. J Neurol 2019; 266:2294-2303. [PMID: 31175433 DOI: 10.1007/s00415-019-09419-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND In patients with MS, the effect of structural damage to the corticospinal tract (CST) has been separately evaluated in the brain and spinal cord (SC), even though a cumulative impact is suspected. OBJECTIVE To evaluate CST damages on both the cortex and cervical SC, and examine their relative associations with motor function, measured both clinically and by electrophysiology. METHODS We included 43 patients with early relapsing-remitting MS. Lesions were manually segmented on SC (axial T2*) and brain (3D FLAIR) scans. The CST was automatically segmented using an atlas (SC) or tractography (brain). Lesion volume fractions and diffusion parameters were calculated for SC, brain and CST. Central motor conduction time (CMCT) and triple stimulation technique amplitude ratio were measured for 42 upper limbs, from 22 patients. RESULTS Mean lesion volume fractions were 5.2% in the SC portion of the CST and 0.9% in the brain portion. We did not find a significant correlation between brain and SC lesion volume fraction (r = 0.06, p = 0.68). The pyramidal EDSS score and CMCT were both significantly correlated with the lesion fraction in the SC CST (r = 0.39, p = 0.01 and r = 0.33, p = 0.03), but not in the brain CST. CONCLUSION Our results highlight the major contribution of SC lesions to CST damage and motor function abnormalities.
Collapse
Affiliation(s)
- Raphaël Chouteau
- Neurology Department, CHU Rennes, Rennes, France.,Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France
| | - Benoit Combès
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France
| | - Elise Bannier
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France.,Radiology Department, CHU Rennes, Rennes, France
| | - Haykel Snoussi
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France
| | - Jean-Christophe Ferré
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France.,Radiology Department, CHU Rennes, Rennes, France
| | - Christian Barillot
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France
| | - Gilles Edan
- Neurology Department, CHU Rennes, Rennes, France.,Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France.,Plurithematic Clinical Investigation Center (CIC-P 1414), INSERM, Rennes, France
| | - Paul Sauleau
- Neurophysiology Department, CHU Rennes, Rennes, France.,Behavior and Basal Ganglia Research Unit (EA4712), Rennes 1 University, Rennes, France
| | - Anne Kerbrat
- Neurology Department, CHU Rennes, Rennes, France. .,Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, Action Et Gestion Des Informations en santé), ERL U 1228, 35000, Rennes, France.
| |
Collapse
|
6
|
Zeng C, Du S, Han Y, Fu J, Luo Q, Xiang Y, Chen X, Luo T, Li Y, Zheng Y. Optic radiations are thinner and show signs of iron deposition in patients with long-standing remitting-relapsing multiple sclerosis: an enhanced T 2*-weighted angiography imaging study. Eur Radiol 2018; 28:4447-4454. [PMID: 29713769 PMCID: PMC6132724 DOI: 10.1007/s00330-018-5461-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
Abstract
Objective This study aimed to investigate iron deposition and thickness and signal changes in optic radiation (OR) by enhanced T2*-weighted angiography imaging (ESWAN) in patients with relapsing-remitting multiple sclerosis (RRMS) with unilateral and bilateral lesions or no lesions. Methods Fifty-one RRMS patients (42 patients with a disease duration [DD] ≥ 2 years [group Mor], nine patients with a DD < 2 years [group Les]) and 51 healthy controls (group Con) underwent conventional magnetic resonance imaging (MRI) and ESWAN at 3.0 T. The mean phase value (MPV) of the OR was measured on the phase image, and thickness and signal changes of the OR were observed on the magnitude image. Results The average MPVs for the OR were 1,981.55 ± 7.75 in group Mor, 1,998.45 ± 2.01 in group Les, and 2,000.48 ± 5.53 in group Con. In group Mor, 28 patients with bilateral OR lesions showed bilateral OR thinning with a heterogeneous signal, and 14 patients with unilateral OR lesions showed ipsilateral OR thinning with a heterogeneous signal. In the remaining nine patients without OR lesions and in group Con, the bilateral OR had a normal appearance. In the patients, a negative correlation was found between DD and OR thickness and a positive correlation was found between MPV and OR thickness. Conclusions We confirmed iron deposition in the OR in the RRMS patients, and the OR thickness was lower in the patients than in the controls. Key Points • Enhanced T2*-weighted magnetic resonance angiography (ESWAN) provides new insights into multiple sclerosis (MS). • Focal destruction of the optic radiation (OR) is detectable by ESWAN. • Iron deposition in OR can be measured on ESWAN phase image in MS patients. • OR thickness was lower in the patients than in the controls. • Iron deposition and thickness changes of the OR are associated with disease duration. Electronic supplementary material The online version of this article (10.1007/s00330-018-5461-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jialiang Fu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
7
|
Sormani MP, Pardini M. Assessing Repair in Multiple Sclerosis: Outcomes for Phase II Clinical Trials. Neurotherapeutics 2017; 14:924-933. [PMID: 28695472 PMCID: PMC5722763 DOI: 10.1007/s13311-017-0558-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) pathology is complex and includes inflammatory processes, neurodegeneration, and demyelination. While multiple drugs have been developed to tackle MS-related inflammation, to date there is scant evidence regarding which therapeutic approach, if any, could be used to reverse demyelination, foster tissue repair, and thus positively impact on chronic disability. Here, we reviewed the current structural and functional markers (magnetic resonance imaging, positron emission tomography, optical coherence tomography, and visual evoked potentials) which could be used in phase II clinical trials of new compounds aimed to foster tissue repair in MS. Magnetic transfer ratio recovery in newly formed lesions currently represents the most widely used biomarker of tissue repair in MS, even if other markers, such as optical coherence tomography and positron emission tomography hold great promise to complement magnetic transfer ratio in tissue repair clinical trials. Future studies are needed to better characterize the different possible biomarkers to study tissue repair in MS, especially regarding their pathological specificity, sensitivity to change, and their relationship with disease activity.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Policlinic San Martino-IST, Genoa, Italy
| |
Collapse
|