1
|
Centonze D, Di Sapio A, Brescia Morra V, Colombo E, Inglese M, Paolicelli D, Salvetti M, Furlan R. Steps toward the implementation of neurofilaments in multiple sclerosis: patient profiles to be prioritized in clinical practice. Front Neurol 2025; 16:1571605. [PMID: 40224313 PMCID: PMC11987710 DOI: 10.3389/fneur.2025.1571605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system disease characterized by neurodegeneration and inflammation. Neurofilament light chain (NfL), a protein released during axonal injury, has gained recognition as a potential biomarker for monitoring MS progression and treatment response. Evidence indicates that blood NfL (bNfL) offers a minimally invasive, cost-effective tool for tracking neuroaxonal damage. Regular bNfL assessments can identify subclinical disease activity, guide treatment intensification, and support individualized care. However, bNfL level evaluation is currently not optimized in Italian clinical practice. This work examines the utility of bNfL monitoring in clinical practice, focusing on optimizing its use within specific patient profiles, especially in resource-limited settings. bNfL testing, particularly in targeted MS patient profiles, including stable patients exhibiting subclinical signs of disease activity, such as fatigue, and patients off-treatment, represents a promising adjunct for personalized disease management. Its integration into clinical practice, alongside MRI and clinical assessments, can enhance decision-making and improve care efficiency, especially in settings with limited MRI resources. Further research is needed to standardize testing protocols and establish disease-specific cutoffs.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessia Di Sapio
- Department of Neurology, Multiple Sclerosis Regional Referral Centre (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Elena Colombo
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Salvetti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Roberto Furlan
- Vita e Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Gajewski B, Karlińska I, Domowicz M, Bednarski I, Świderek-Matysiak M, Stasiołek M. No Relation Between Cognitive Impairment, Physical Disability and Serum Biomarkers in a Cohort of Progressive Multiple Sclerosis Patients. Biomolecules 2025; 15:68. [PMID: 39858462 PMCID: PMC11763174 DOI: 10.3390/biom15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Despite significant efforts, there is still an existing need to identify diagnostic tools that would enable fast and reliable detection of the progressive stage of multiple sclerosis (MS) and help in monitoring the disease course and/or treatment effects. The aim of this prospective study in a group of people with progressive MS was to determine whether changes in the levels of selected serum biomarkers and in cognitive function may predict disease progression, and therefore refine the decision-making process in the evaluation of MS patients. Forty two (42) patients with progressive MS completed all the study procedures; the mean duration of follow-up was 12.97 months. During the observation period, serum concentration of chitinase-3 like-protein-1 (CHI3L1/YKL-40) decreased significantly in the whole study group (from 4034.95 ± 262.62 to 2866.43 ± 173.37; p = 0.0005), as well as in subgroups of people with secondary progressive and primary progressive MS (SPMS: from 3693.81 ± 388.68 to 2542.76 ± 256.59; p = 0.0207; and PPMS: from 4376.09 ± 353.27 to 3190.09 ± 233.22; p = 0.0089, respectively). A significant worsening of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) scores was detected in the whole study group (from 1.18 ± 0.14 to 1.34 ± 0.15; p = 0.0331) as well as in the PPMS subgroup (from 1.04 ± 0.18 to 1.26 ± 0.20; p = 0.0216). No correlations between the analyzed molecular parameters or the results of neuropsychological tests and physical disability were observed. In conclusion, an emphasis should be placed on furthering the search for multimodal biomarkers of disease progression, especially in the PMS population, based on simultaneous analysis of several factors, such as blood biomarkers and cognitive profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland; (B.G.); (I.K.); (M.D.); (I.B.); (M.Ś.-M.)
| |
Collapse
|
3
|
Qiu X, Liang Y, Wei Y, Lu M, Mei Y, Liu B, Tang Y, Liang J. Progression predictors of clinically isolated syndrome to multiple sclerosis: A prospective study in China. Clin Neurol Neurosurg 2024; 245:108514. [PMID: 39173490 DOI: 10.1016/j.clineuro.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Clinically isolated syndrome (CIS) is a preclinical phase of multiple sclerosis (MS). The progression rate of CIS to clinical definite MS (CDMS) varies significantly across different populations, and identifying predictors of progression is crucial for early diagnosis and treatment. We aimed to investigate predictors of progression from CIS to CDMS in a Chinese cohort. METHODS A single-center cohort study was conducted with newly diagnosed patients with CIS in China between 2018 and 2021. All patients underwent a comprehensive clinical evaluation, including neurological examination, magnetic resonance imaging, and laboratory tests. Follow-up assessments were conducted at regular intervals to monitor disease progression. Progression to CDMS was defined according to the 2017 McDonald criteria. Age, sex, Expanded Disability Status Scale (EDSS) score, number of patients with magnetic resonance imaging gadolinium-enhancing (Gd+) lesions, T2 lesions and Gd+ lesions count, CSF cell count, CSF total protein, CSF and serum neurofilament light chain (NfL), progranulin (PGRN) and Th17-related cytokines (IL-6, IL-17, IL-21, IL-22, IL-23 and TGF-β) were measured for association with risk of progression to CDMS. RESULTS A total of 96 CIS patients were recruited in the study. During the at least 24 months follow-up period, 57 (59.38 %) CIS patients progressed to CDMS, while 39 (40.62 %) patients without progression remained stable as CIS. Multivariate analysis revealed that younger age at onset (OR= 43.43, 95 % CI= 1.76-1071.68, p<0.021), higher CSF elevated protein (OR=58.64, 95 % CI=2.72-1264.51, p=0.009), higher CSF NfL levels (OR= 97.00, 95 % CI= 4.68-2012.99, p=0.003) and higher CSF IL-23 levels (OR= 412.02, 95 % CI=6.56-25869.60, p=0.004) were associated with high risk of progression to CDMS. CONCLUSION Younger age at onset, elevated CSF NfL, IL-23 and protein levels might be progression predictors of CIS to CDMS in Chinese population.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yeyuan Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunfei Wei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengru Lu
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Department of Neurology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yulan Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junli Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Passali M, Galea I, Knudsen MH, Lau LC, Cramer SP, Frederiksen JL. Cerebrospinal fluid neurofilament light chain in acute optic neuritis and its predictive ability of multiple sclerosis. J Neurol 2024; 271:6127-6135. [PMID: 39052040 PMCID: PMC11377639 DOI: 10.1007/s00415-024-12587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Studies on the capability of cerebrospinal fluid neurofilament light chain (cNfL) to predict multiple sclerosis (MS) conversion in clinically isolated syndromes have yielded varying results. OBJECTIVES To expand our understanding of cNfL in optic neuritis (ON) and investigate whether incorporating cNfL into the 2017 McDonald criteria could accelerate the diagnosis of MS in patients with ON. METHODS cNfL was measured in diagnostic samples from 74 patients with verified ON. MS was diagnosed using the 2017 McDonald criteria with a minimum observation time of two years from ON onset. RESULTS 20.5% of 44 MS-converters did not fulfil the 2017 McDonald criteria at ON onset. A doubling of cNfL was associated with 207% (74%-514%) higher odds of MS (p = 0.00042, adjusted for age). Fulfilment of ≥ 1 MRI criterion for dissemination in space (DIS) and presence of brain contrast-enhancing lesions were associated with higher cNfL. Furthermore, cNfL correlated with inter-eye differences in retinal nerve fiber layer (RNFL) thickness (Spearman's ρ = 0.46, p = 8 × 10-5). Incorporating cNfL ≥ 906 pg/mL as a substitute for either dissemination in time or one MRI criterion for DIS increased the sensitivity (90.9% vs. 79.6%) and accuracy (91.9% vs. 87.8%), but also reduced the specificity (93.3% vs. 100%) of the 2017 McDonald criteria. CONCLUSION cNfL was related to MS diagnostic parameters and the degree of RNFL swelling. Clinical use of cNfL may aid in identification of ON patients with increased risk of MS until larger studies have elaborated on the potential loss of specificity if used diagnostically.
Collapse
Affiliation(s)
- Moschoula Passali
- Optic Neuritis Clinic, Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Maria Højberg Knudsen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Laurie Chi Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stig Præstekjær Cramer
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jette Lautrup Frederiksen
- Optic Neuritis Clinic, Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Monteiro I, Nicolella V, Fiorenza M, Novarella F, Carotenuto A, Lanzillo R, Mauriello L, Scalia G, Castaldo G, Terracciano D, Brescia Morra V, Moccia M. The ocrelizumab wearing-off phenomenon is associated with reduced immunomodulatory response and increased neuroaxonal damage in multiple sclerosis. J Neurol 2024; 271:5012-5024. [PMID: 38777960 PMCID: PMC11319527 DOI: 10.1007/s00415-024-12434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The wearing-off phenomenon is common in people with multiple sclerosis (MS) treated with ocrelizumab. We aim to evaluate the presence and severity of wearing-off to ocrelizumab in relation to demographic and MS clinical variables, immune profiling, and a marker of neuroaxonal damage (plasma neurofilament light chain (pNfl)). METHODS This cross-sectional study included MS patients treated with ocrelizumab from at least 1 year. Wearing-off questionnaire and blood samples were collected between 21 and 23 weeks after the previous ocrelizumab infusion. Lymphocyte subpopulations were evaluated on peripheral blood using flow cytometry. PNfl was evaluated using fully automated chemiluminescent enzyme immunoassay. RESULTS We included 106 people with MS (age 49.5 ± 11.6 years; females 42.3%; wearing-off 57.6%). On regression models, wearing-off was associated with higher pNfl, CD8, CD3, and CD3CD27 lymphocytes. Most frequent wearing-off symptoms were cognitive, sensory, and balance problems; wearing-off started < 1 week (9.4%), 1-4 weeks (10.7%) or > 4 weeks (10.7%) before infusion; 44.8% of the complaints were moderate to severe. Severity of wearing-off was associated with higher pNfl and CD8 lymphocytes. CONCLUSIONS Wearing-off is common in people with MS treated with ocrelizumab, and is associated with reduced immunomodulation (higher T lymphocytes) and increased neuroaxonal damage, suggesting reduced treatment response.
Collapse
Affiliation(s)
- Isabel Monteiro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Valerio Nicolella
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Mariano Fiorenza
- Department of Translational Medical Science, Federico II University of Naples, Naples, Italy
| | - Federica Novarella
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | | | - Giulia Scalia
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Science, Federico II University of Naples, Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Marcello Moccia
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy.
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
7
|
Saucier L, Healy BC, Saxena S, Sanon E, Chitnis T. Glial fibrillary acidic protein and neurofilament light chain as biomarkers in pediatric multiple sclerosis. Mult Scler J Exp Transl Clin 2024; 10:20552173241274567. [PMID: 39193071 PMCID: PMC11348348 DOI: 10.1177/20552173241274567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Background Serum neurofilament light chain (sNfL) is a marker of neuroaxonal injury, and serum glial fibrillary acidic protein (sGFAP) reflects reactive astrogliosis. In adult multiple sclerosis (MS), sNfL correlates with relapsing disease activity while sGFAP correlates with progressive disease. Objectives We evaluate sNfL and sGFAP as biomarkers in pediatric-onset MS (POMS) compared to pediatric healthy controls (PHC), and correlations with the disease course. Methods In this single-center observational cross-sectional study, we extracted data from a longitudinal database and measured NfL and GFAP from bio-banked serum using single-molecule array technology. Results The analysis included 61 POMS patients and 45 PHC. Controlling for age and BMI, sNfL was 414% higher and sGFAP was 42.3% higher in POMS. Disability (EDSS) is associated with higher sNfL (β = 0.32, p = 0.002) and higher sGFAP (β = 0.11, p = 0.03). sNfL is associated with MRI lesion burden, recent disease activity (β =0.95, p < 0.001), and untreated status (β = 0.5, p = 0.006). Conclusion sNfL and sGFAP are elevated in POMS compared to PHC. Both biomarkers are associated with clinical disability. Elevated sGFAP may reflect early neurodegeneration in POMS, while sNfL reflects disease activity and DMT response. Elevated sNfL among some clinically and radiographically stable POMS patients suggests ongoing neuroaxonal injury with a potential role for sNfL monitoring disease stability.
Collapse
Affiliation(s)
- Laura Saucier
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Mass General Brigham Pediatric MS Center, Massachusetts General Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA; Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shrishti Saxena
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eunnindy Sanon
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Translational Neuroimmunology Research Center (TNRC), Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Mass General Brigham Pediatric MS Center, Massachusetts General Hospital, Boston, MA, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Bayoumy S, Verberk IMW, Vermunt L, Willemse E, den Dulk B, van der Ploeg AT, Pajkrt D, Nitz E, van den Hout JMP, van der Post J, Wolf NI, Beerepoot S, Groen EJN, Tüngler V, Teunissen CE. Neurofilament light protein as a biomarker for spinal muscular atrophy: a review and reference ranges. Clin Chem Lab Med 2024; 62:1252-1265. [PMID: 38215341 DOI: 10.1515/cclm-2023-1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.
Collapse
Affiliation(s)
- Sherif Bayoumy
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline Willemse
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ben den Dulk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dasja Pajkrt
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Nitz
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Julie van der Post
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Victoria Tüngler
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Gklinos P, Mitsikostas DD. Headache disorders in multiple sclerosis: Is there an association? A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 85:105536. [PMID: 38489946 DOI: 10.1016/j.msard.2024.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 03/02/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVE To look for any potential association of headache disorders with multiple sclerosis (MS). BACKGROUND The prevalence of headache disorders has been found to be increased in people with MS (pwMS), however, an association has not been established. Existing studies have provided conflicting results mostly because of methodological differences. METHODS PubMed, Embase and Scopus were searched to identify eligible studies. Studies were included if they were cross-sectional, case-control or cohort. Newcastle-Ottawa Scale (NOS) was used to assess the risk of bias of the included studies. Case-control, cross sectional or cohort studies that used the International Classification of Headache Disorders (ICHD)-2 or-3 criteria for headache diagnosis and Mc Donald or Poser criteria for MS diagnosis were included. Data were extracted using standardized data collection form. Meta-analysis was conducted by calculating the overall prevalence of headache disorders in pwMS as well as the association of headache disorders with MS. The Newcastle-Ottawa Scale (NOS), a tool for assessing the quality of non-randomized studies, was used to assess the quality of the included studies. RESULTS Twenty-three studies were included yielding a total of 5,440 MS patients and 28,0958 controls. The majority of them scored a NOS score between 5 and 6 (max 9), which indicates that they did not rank high in terms of quality, because most studies were cross-sectional and uncontrolled, and only one was prospective, controlled, and longitudinal, but with small population size. Pooled prevalence for all headache disorders, migraine and tension-type headache (TTH) in pwMS was 58 % (95 % CI 0.54-0.61), 30 % (95 % CI 0.25-0.34) and 19 % (95 % CI 0.15-0.23) respectively. A significant association between migraine and MS was found (OR = 2.02, 95 % CI = 1.14-3.57). CONCLUSION PwMS are twice as likely to experience migraine as controls, but the results need to be translated with caution since most of the studies included in the meta-analysis were of low or moderate quality. Larger prospective cohort, controlled, longitudinal studies are needed to confirm whether there is indeed an association between MS and migraine.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- First Neurology Department, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Dimos-Dimitrios Mitsikostas
- First Neurology Department, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Sladojević M, Nikolić S, Živanović Ž, Simić S, Sakalaš L, Spasić I, Ilinčić B, Čabarkapa V. Determination of systemic inflammatory biomarkers in multiple sclerosis. J Med Biochem 2024; 43:257-264. [PMID: 38699700 PMCID: PMC11062333 DOI: 10.5937/jomb0-45083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/08/2023] [Indexed: 05/05/2024] Open
Abstract
Background Multiple sclerosis (MS) is one of the most common demyelinating diseases of the central nervous system. We aimed to investigate serum and cerebrospinal fluid levels of different laboratory inflammatory biomarkers in patients with MS. Methods A total of 120 subjects participated in the study, 60 of whom were diagnosed with MS, 30 with the final diagnosis of non-inflammatory diseases of the central nervous system (CNS), and 30 healthy subjects representing the control group. Regarding the progression of radiological findings after 2 years from the initial diagnosis, the MS group was divided into stationary radiological findings (n=30) and radiologically proven disease progression (n=30). In all patients, we analyzed levels of laboratory inflammatory biomarkers: C reactive protein (CRP), Neutrophil-to-lymphocyte ratio (NLR), Growth differentiation factor 15 (GDF15) in serum samples, and neurofilaments (NFs) in cerebrospinal fluid (CSF). NFs and GDF15 were analyzed initially, while CRP and NLR values were analyzed initially and after two years. Results We found statistically lower GDF15 values and initial CRP values in the MS group regarding the group with non-inflammatory diseases of the CNS (p<0.0001). On the other side, we determined a significant elevation of laboratory markers CRP and NLR, initially and after a two-year period, in the MS subgroup with the progression of magnetic resonance imaging (MRI) findings (p<0.0001 and p=0.050, respectively). Also, we found a positive correlation between CRP and NFs (r=0.243, p=0.04), as well as a positive correlation between CRP and GDF15 in patients with MS (r=0.769, p<0.0001). Conclusions We found a significant elevation of laboratory markers of systemic inflammation, CRP, and NLR in MS patients who developed disease progression based on MRI findings. There is a need for further studies to validate current parameters to be considered as useful markers of MS activity and disability.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Spasić
- Department of Laboratory Diagnostics Medlab, Novi Sad
| | | | | |
Collapse
|
11
|
Chertcoff A, Schneider R, Azevedo CJ, Sicotte N, Oh J. Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis. Neurol Clin 2024; 42:15-38. [PMID: 37980112 DOI: 10.1016/j.ncl.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease. Currently, a combination of clinical features, MRI, and cerebrospinal fluid markers are used in clinical practice for diagnosis and treatment decisions. In recent years, there has been considerable effort to develop novel biomarkers that better reflect the pathologic substrates of the disease to aid in diagnosis and early prognosis, evaluation of ongoing inflammatory activity, detection and monitoring of disease progression, prediction of treatment response, and monitoring of disease-modifying treatment safety. In this review, the authors provide an overview of promising recent developments in diagnostic, prognostic, and disease-monitoring/treatment-response biomarkers in MS.
Collapse
Affiliation(s)
- Anibal Chertcoff
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, HCT 1520 San Pablo Street, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, 127 S San Vicente Boulevard, 6th floor, Suite A6600, Los Angeles, CA 90048, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Williams T, John N, Doshi A, Chataway J. Adult inflammatory leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:399-430. [PMID: 39322392 DOI: 10.1016/b978-0-323-99209-1.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Inflammatory white matter disorders may commonly mimic genetic leukoencephalopathies. These include atypical presentations of common conditions, such as multiple sclerosis, together with rare inflammatory disorders. A structured approach to such cases is essential, together with judicious use of the many available diagnostic biomarkers. The potential for such conditions to respond to immunotherapy emphasizes the importance of an accurate and prompt diagnosis in improving patient outcomes.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.
| | - Nevin John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, United Kingdom
| |
Collapse
|
13
|
Co DO. Acquired Demyelinating Syndromes. Med Clin North Am 2024; 108:93-105. [PMID: 37951658 DOI: 10.1016/j.mcna.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Acquired demyelinating syndromes (ADS) are a heterogenous group of inflammatory demyelinating conditions that include presentations of optic neuritis, transverse myelitis, and acute demyelinating encephalomyelitis. They can be monophasic or can develop into relapsing episodes of the initial demyelinating event or evolve to include other types of demyelination. Significant progress has been made in differentiating subtypes of ADS that differ in their tendency to relapse and in which anti-inflammatory therapies are effective. Differentiating between these subtypes is important for the optimal management of these patients. Clinical features, labs (especially autoantibodies), and MRI findings can help to differentiate between the different ADS.
Collapse
Affiliation(s)
- Dominic O Co
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Clinical Science Center (CSC), H6/572, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
14
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E, Torres-Carrillo N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed Rep 2023; 19:93. [PMID: 37901876 PMCID: PMC10603378 DOI: 10.3892/br.2023.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding the relationship between microorganisms that live in our intestines and neuroinflammatory and neurodegenerative pathologies of the central nervous system (CNS) is essential, since they have been shown to have an immunomodulatory effect in neurological disorders, such as multiple sclerosis (MS). The gut microbiota can be affected by several environmental factors, including infections, physical and emotional stress and diet, the latter known as the main modulator of intestinal bacteria. An abrupt shift in the gut microbiota composition and function is known as dysbiosis, a state of local and systemic inflammation produced by pathogenic bacteria and its metabolites responsible for numerous neurological symptoms. It may also trigger neuronal damage in patients diagnosed with MS. Intestinal dysbiosis affects the permeability of the intestine, allowing chronic low-grade bacterial translocation from the intestine to the circulation, which may overstimulate immune cells and cells resident in the CNS, break immune tolerance and, in addition, alter the permeability of the blood-brain barrier (BBB). This way, toxins, inflammatory molecules and oxidative stress molecules can pass freely into the CNS and cause extensive damage to the brain. However, commensal bacteria, such as the Lactobacillus genus and Bacteroides fragilis, and their metabolites (with anti-inflammatory potential), produce neurotransmitters such as γ-aminobutyric acid, histamine, dopamine, norepinephrine, acetylcholine and serotonin, which are important for neurological regulation. In addition, reprogramming the gut microbiota of patients with MS with a healthy gut microbiota may help improve the integrity of the gut and BBB, by providing clinically protective anti-inflammatory effects and reducing the disease's degenerative progression. The present review provides valuable information about the relationship between gut microbiota and neuroinflammatory processes of the CNS. Most importantly, it highlights the importance of intestinal bacteria as an environmental factor that may mediate the clinical course of MS, or even predispose to the outbreak of this disease.
Collapse
Affiliation(s)
- María Eugenia Torres-Chávez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Nora Magdalena Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Victoria Monreal-Lugo
- Department of Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
- Department of Nutrition and Bioprogramming Coordination, Isidro Espinosa de los Reyes National Institute of Perinatology, Mexico City 11000, Mexico
| | - Sandra Garnés-Rancurello
- Department of Nutrition, Technological Institute of Higher Studies of Monterrey, Zapopan, Jalisco 45201, Mexico
| | | | - Itzae Adonai Gutiérrez-Hurtado
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Jesús Raúl Beltrán-Ramírez
- Department of Information Systems, University Center of Administrative Economic Sciences, University of Guadalajara, Zapopan, Jalisco 45100, Mexico
| | - Elena Sandoval-Pinto
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Zapopan, Jalisco 45200, Mexico
| | - Norma Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
15
|
Abdelhak A, Petermeier F, Benkert P, Schädelin S, Oechtering J, Maleska Maceski A, Kabesch M, Geis T, Laub O, Leipold G, Gobbi C, Zecca C, Green A, Tumani H, Willemse E, Wiendl H, Granziera C, Kappos L, Leppert D, Waubant E, Wellmann S, Kuhle J. Serum neurofilament light chain reference database for individual application in paediatric care: a retrospective modelling and validation study. Lancet Neurol 2023; 22:826-833. [PMID: 37524100 DOI: 10.1016/s1474-4422(23)00210-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Neurological conditions represent an important driver of paediatric disability burden worldwide. Measurement of serum neurofilament light chain (sNfL) concentrations, a specific marker of neuroaxonal injury, has the potential to contribute to the management of children with such conditions. In this context, the European Medicines Agency recently declared age-adjusted reference values for sNfL a top research priority. We aimed to establish an age-adjusted sNfL reference range database in a population of healthy children and adolescents, and to validate this database in paediatric patients with neurological conditions to affirm its clinical applicability. METHODS To generate a paediatric sNfL reference dataset, sNfL values were measured in a population of healthy children and adolescents (aged 0-22 years) from two large cohorts in Europe (the Coronavirus Antibodies in Kids from Bavaria study, Germany) and North America (a US Network of Paediatric Multiple Sclerosis Centers paediatric case-control cohort). Children with active or previous COVID-19 infection or SARS-CoV-2 antibody positivity at the time of sampling, or a history of primary systemic or neurological conditions were excluded. Linear models were used to restrospectively study the effect of age and weight on sNfL concentrations. We modelled the distribution of sNfL concentrations as a function of age-related physiological changes to derive reference percentile and Z score values via a generalised additive model for location, scale, and shape. The clinical utility of the new reference dataset was assessed in children and adolescents (aged 1-19 years) with neurological diseases (epilepsy, traumatic brain injury, bacterial CNS infections, paediatric-onset multiple sclerosis, and myelin oligodendrocyte glycoprotein antibody-associated disease) from the paediatric neuroimmunology clinic at the University of California San Francisco (San Francisco, CA, USA) and the Children's Hospital of the University of Regensburg (Regensburg, Germany). FINDINGS Samples from 2667 healthy children and adolescents (1336 [50·1%] girls and 1331 [49·9%] boys; median age 8·0 years [IQR 4·0-12·0]) were used to generate the reference database covering neonatal age to adolescence (target age range 0-20 years). In the healthy population, sNfL concentrations decreased with age by an estimated 6·8% per year until age 10·3 years (estimated multiplicative effect per 1 year increase 0·93 [95% CI 0·93-0·94], p<0·0001) and was mostly stable thereafter up to age 22 years (1·00 [0·52-1·94], p>0·99). Independent of age, the magnitude of the effect of weight on sNfL concentrations was marginal. Samples from 220 children with neurological conditions (134 [60·9%] girls and 86 [39·1%] boys; median age 14·7 years [IQR 10·8-16·5]) were used to validate the clinical utility of the reference Z scores. In this population, age-adjusted sNfL Z scores were higher than in the reference population of healthy children and adolescents (p<0·0001) with higher effect size metrics (Cohen's d=1·56) compared with the application of raw sNfL concentrations (d=1·28). INTERPRETATION The established normative sNfL values in children and adolescents provide a foundation for the clinical application of sNfL in the paediatric population. Compared with absolute sNfL values, the use of sNfL Z score was associated with higher effect size metrics and allowed for more accurate estimation of the extent of ongoing neuroaxonal damage in individual patients. FUNDING Swiss National Science Foundation, US National Institutes of Health, and the National Multiple Sclerosis Society.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Franziska Petermeier
- University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Pascal Benkert
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michael Kabesch
- University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Tobias Geis
- University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Otto Laub
- Paediatric Office Laub, Rosenheim, Germany
| | | | - Claudio Gobbi
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ari Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Eline Willemse
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sven Wellmann
- University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany.
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland; Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Ziaei A, Nasr Z, Hart J, Francisco C, Rutatangwa A, Leppert D, Kuhle J, Flanagan E, Waubant E. High serum neurofilament levels are observed close to disease activity events in pediatric-onset MS and MOG antibody-associated diseases. Mult Scler Relat Disord 2023; 74:104704. [PMID: 37031551 DOI: 10.1016/j.msard.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) is an emerging multiple sclerosis (MS) biomarker which measures neuro-axonal damage. However, understanding its temporal association with disease activity in pediatric-onset MS (POMS) and Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) remains limited. OBJECTIVE To investigate the association of sNfL levels and time from disease activity in children with MS and MOGAD. METHODS POMS and MOGAD cases with onset before 18 years of age were enrolled at the University of California San Francisco (UCSF) Regional Pediatric MS Center. Frequency-matched healthy subjects were recruited from general pediatric clinics. Serum samples were tested for MOG-IgG at Mayo Clinic using a live cell-based fluorescent activated cell sorting assay. sNfL levels were measured using single-molecule array (Simoa) technology measured in pg/mL. Data on demographics, clinical features, MRI, CSF, and treatment data were collected by chart review. RESULTS We included 201 healthy controls healthy controls, 142 POMS, and 20 confirmed MOGAD cases with available sNfL levels. The median (IQR) age at the time of sampling was 15.6 (3.9), 15.5 (3.1), and 8.8 (4.1) years for controls, POMS, and MOGAD, respectively. Median sNfL levels (pg/ml) were higher in POMS (19.6) and MOGAD (32.7) cases compared to healthy controls (3.9) (p<0.001). sNfL levels ≥100 pg/ml were only detected within four months of a clinical event or MRI activity in both POMS and MOGAD cases. In addition, sNfL levels were higher in POMS patients with new/enlarged T2 and gadolinium-enhanced lesions than those without MRI activity within four months of sampling in POMS cases. CONCLUSION High sNfL levels were observed close to clinical or MRI events in POMS and MOGAD. Our findings support sNfL as a biomarker of disease activity in pediatric demyelinating disorders.
Collapse
Affiliation(s)
- Amin Ziaei
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zahra Nasr
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Janace Hart
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Carla Francisco
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alice Rutatangwa
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - David Leppert
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Jens Kuhle
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Eoin Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Emmanuelle Waubant
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
17
|
Abstract
This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The potential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neurotrophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evident. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syndrome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prognosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be performed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identified.
Collapse
Affiliation(s)
- Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Yılmaz Ü, Gücüyener K, Yavuz M, Öncel İ, Canpolat M, Saltık S, Ünver O, Çıtak Kurt AN, Tosun A, Yılmaz S, Özgör B, Erol İ, Öztoprak Ü, Elitez DA, Direk MÇ, Bodur M, Teber S, Anlar B. Re-examining the characteristics of pediatric multiple sclerosis in the era of antibody-associated demyelinating syndromes. Eur J Paediatr Neurol 2022; 41:8-18. [PMID: 36137476 DOI: 10.1016/j.ejpn.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The discovery of anti-myelin oligodendrocyte glycoprotein (MOG)-IgG and anti-aquaporin 4 (AQP4)-IgG and the observation on certain patients previously diagnosed with multiple sclerosis (MS) actually have an antibody-mediated disease mandated re-evaluation of pediatric MS series. AIM To describe the characteristics of recent pediatric MS cases by age groups and compare with the cohort established before 2015. METHOD Data of pediatric MS patients diagnosed between 2015 and 2021 were collected from 44 pediatric neurology centers across Türkiye. Clinical and paraclinical features were compared between patients with disease onset before 12 years (earlier onset) and ≥12 years (later onset) as well as between our current (2015-2021) and previous (<2015) cohorts. RESULTS A total of 634 children (456 girls) were enrolled, 89 (14%) were of earlier onset. The earlier-onset group had lower female/male ratio, more frequent initial diagnosis of acute disseminated encephalomyelitis (ADEM), more frequent brainstem symptoms, longer interval between the first two attacks, less frequent spinal cord involvement on magnetic resonance imaging (MRI), and lower prevalence of cerebrospinal fluid (CSF)-restricted oligoclonal bands (OCBs). The earlier-onset group was less likely to respond to initial disease-modifying treatments. Compared to our previous cohort, the current series had fewer patients with onset <12 years, initial presentation with ADEM-like features, brainstem or cerebellar symptoms, seizures, and spinal lesions on MRI. The female/male ratio, the frequency of sensorial symptoms, and CSF-restricted OCBs were higher than reported in our previous cohort. CONCLUSION Pediatric MS starting before 12 years was less common than reported previously, likely due to exclusion of patients with antibody-mediated diseases. The results underline the importance of antibody testing and indicate pediatric MS may be a more homogeneous disorder and more similar to adult-onset MS than previously thought.
Collapse
Affiliation(s)
- Ünsal Yılmaz
- University of Health Sciences Türkiye, Izmir Faculty of Medicine, Dr. Behçet Uz Children's Education and Research Hospital, Department of Pediatrics, Division of Pediatric Neurology, Izmir, Turkey.
| | - Kıvılcım Gücüyener
- Gazi University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| | - Merve Yavuz
- University of Health Sciences Türkiye, Izmir Faculty of Medicine, Dr. Behçet Uz Children's Education and Research Hospital, Department of Pediatrics, Division of Pediatric Neurology, Izmir, Turkey
| | - İbrahim Öncel
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| | - Mehmet Canpolat
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Kayseri, Turkey
| | - Sema Saltık
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, İstanbul, Turkey
| | - Olcay Ünver
- Marmara University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, İstanbul, Turkey
| | - Ayşegül Neşe Çıtak Kurt
- Yıldırım Beyazıt University Faculty of Medicine, Ankara City Hospital, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| | - Ayşe Tosun
- Adnan Menderes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Aydın, Turkey
| | - Sanem Yılmaz
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, İzmir, Turkey
| | - Bilge Özgör
- Inonu University Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatrics, Division of Pediatric Neurology, Malatya, Turkey
| | - İlknur Erol
- Başkent University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Adana, Turkey
| | - Ülkühan Öztoprak
- University of Health Sciences Turkey, Dr. Sami Ulus Research and Training Hospital, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| | - Duygu Aykol Elitez
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, İzmir, Turkey
| | - Meltem Çobanoğulları Direk
- Mersin University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Mersin, Turkey
| | - Muhittin Bodur
- Uludağ University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Bursa, Turkey
| | - Serap Teber
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| | - Banu Anlar
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Ankara, Turkey
| |
Collapse
|
19
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
20
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
21
|
Margoni M, Preziosa P, Rocca MA, Filippi M. Pediatric multiple sclerosis: developments in timely diagnosis and prognostication. Expert Rev Neurother 2022; 22:393-403. [PMID: 35400266 DOI: 10.1080/14737175.2022.2064743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pediatric-onset (PO) multiple sclerosis (MS) accounts for about 2-10% of the total MS cases. Recently, a greater attention has been given to POMS, with substantial improvements in the understanding of its pathophysiology, in the diagnostic work-up and in the identification of reliable prognosticators associated with long-term disability in these patients. AREAS COVERED This review summarizes the most recent updates regarding the pathophysiology of POMS, the current diagnostic criteria and the clinical, neuroradiological and laboratoristic markers that have been associated with disease progression (i.e. occurrence of a second clinical attack at disease onset and accumulation of disability in definite MS). EXPERT OPINION The study of POMS, where the clinical onset is closer to the biological onset of MS, may contribute to better understand how the different pathological processes impact brain maturation and contribute to disease progression, but also how brain plasticity may counterbalance structural damage accumulation. Although rare, POMS is a severe disease, characterized by a prominent clinical and radiological activity at disease onset and by the accumulation of physical and cognitive disability at a younger age compared to the adult counterpart, with significant detrimental consequences at long-term. Early and accurate diagnosis, together with early treatment, is highly warranted.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Multiple Sclerosis Center of the Veneto Region, Department of Neurosciences, University Hospital - School of Medicine, Padua, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
23
|
Wendel EM, Bertolini A, Kousoulos L, Rauchenzauner M, Schanda K, Wegener-Panzer A, Baumann M, Reindl M, Otto M, Rostásy K. Serum neurofilament light-chain levels in children with monophasic myelin oligodendrocyte glycoprotein-associated disease, multiple sclerosis, and other acquired demyelinating syndrome. Mult Scler 2022; 28:1553-1561. [DOI: 10.1177/13524585221081090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To assess the diagnostic and prognostic potential of serum neurofilament light chain (sNfL) in children with first acquired demyelinating syndrome (ADS). Methods: We selected 129 children with first ADS including 19 children with myelin oligodendrocyte glycoprotein (MOG)-antibody associated disease (MOGAD), 36 MOG/AQP4-seronegative ADS, and 74 with multiple sclerosis (MS) from the BIOMARKER study cohort. All children had a complete set of clinical, radiological, laboratory data and serum for NfL measurement using a highly sensitive digital ELISA (SIMOA). A control group of 35 children with non-inflammatory neurological diseases was included. sNfL levels were compared across patient groups according to clinical, laboratory, neuroradiological features and outcome after 2 years. Results: sNfL levels were significantly increased in MOGAD, seronegative ADS and MS compared to controls ( p-value < 0.001), in particular in children with an acute disseminated encephalomyelitis (ADEM)-like magnetic resonance imaging (MRI) pattern ( p < 0.001) or longitudinally extensive myelitis ( p < 0.01). In pediatric MS, elevated sNfL levels were significantly associated with higher numbers of cerebral ( p < 0.001) and presence of spinal ( p < 0.05) MRI lesions at baseline and predicted a higher number of relapses ( p < 0.05). Conclusion: sNfL levels are significantly elevated in all three studied pediatric ADS subtypes indicating neuroaxonal injury. In pediatric MS high levels of sNfL are associated with risk factors for disease progression.
Collapse
Affiliation(s)
- Eva-Maria Wendel
- Department of Pediatrics, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Annikki Bertolini
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Lampros Kousoulos
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Markus Rauchenzauner
- Department of Pediatrics and Neonatology, Kliniken Ostallgäu-Kaufbeuren, Kaufbeuren, Germany/Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Wegener-Panzer
- Department of Pediatric Radiology, Children`s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Otto
- Department of Neurology, University Hospital of Ulm, Ulm, Germany; Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| |
Collapse
|
24
|
Kouchaki E, Dashti F, Mirazimi SMA, Alirezaei Z, Jafari SH, Hamblin MR, Mirzaei H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI JOURNAL 2021; 20:1308-1325. [PMID: 34602928 PMCID: PMC8481790 DOI: 10.17179/excli2021-3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
The treatments for multiple sclerosis (MS) have improved over the past 25 years, but now the main question for physicians is deciding who should receive treatment, for how long, and when to switch to other options. These decisions are typically based on treatment tolerance and a reasonable expectation of long-term efficacy. A significant unmet need is the lack of accurate laboratory measurements for diagnosis, and monitoring of treatment response, including deterioration and disease progression. There are few validated biomarkers for MS, and in practice, physicians employ two biomarkers discovered fifty years ago for MS diagnosis, often in combination with MRI scans. These biomarkers are intrathecal IgG and oligoclonal bands in the CSF (cerebrospinal fluid). Neurofilament light chain (NfL) is a relatively new biomarker for MS diagnosis and follow up. Neurofilaments are neuron-specific cytoskeleton proteins that can be measured in various body compartments. NfL is a new biomarker for MS that can be measured in serum samples, but this still needs further study to specify the laboratory cut-off values in clinical practice. In the present review we discuss the evidence for NfL as a reliable biomarker for the early detection and management of MS. Moreover, we highlight the correlation between MRI and NfL, and ask whether they can be combined.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- MS Fellowship, Department of Neurology, School of Medicine, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
25
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
26
|
McKay KA, Wickström R, Hillert J, Karrenbauer VD. Cerebrospinal fluid markers in incident pediatric-onset multiple sclerosis: a nationwide study. Sci Rep 2021; 11:18528. [PMID: 34535701 PMCID: PMC8448868 DOI: 10.1038/s41598-021-97543-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023] Open
Abstract
To investigate whether cerebrospinal fluid (CSF) markers differ between pediatric-onset multiple sclerosis (PoMS, onset < 18 years) and adult-onset (AoMS), and whether these markers are associated with clinical outcomes among PoMS. Prospective nationwide registry study of incident MS, including persons with a CSF sample < 3 years post-MS onset. We compared CSF oligoclonal band (OCB) status, immunoglobulin G (IgG) index levels, and mononuclear cell count between PoMS and AoMS. Within the PoMS cohort we analyzed the association between CSF markers, relapse rate and Expanded Disability Status Scale (EDSS) score, using negative binomial regression and generalized estimating equations, respectively. The cohort consisted of 130 PoMS and 3228 AoMS cases. The PoMS group had higher odds of OCB-positivity (odds ratio: 2.70; 95% CI 1.21–7.67). None of the CSF markers were associated with relapse rate in the PoMS cohort; however, OCB-positivity was associated with higher EDSS scores. This study suggested that PoMS more commonly display CSF evidence for intrathecal IgG production than AoMS. Further, we found evidence of a relationship between OCB-positivity and subsequent disability, suggesting that they could play a role in the prognostication of MS in children.
Collapse
Affiliation(s)
- Kyla A McKay
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine (CMM) L8:05, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Ronny Wickström
- Neuropediatric Unit, Astrid Lindgren's Childrens's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Virginija Danylaite Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Beerepoot S, Heijst H, Roos B, Wamelink MMC, Boelens JJ, Lindemans CA, van Hasselt PM, Jacobs EH, van der Knaap MS, Teunissen CE, Wolf NI. Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy. Brain 2021; 145:105-118. [PMID: 34398223 PMCID: PMC8967093 DOI: 10.1093/brain/awab304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/02/2022] Open
Abstract
Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0–42 years) with 38 neurologically healthy children (aged 0–17 years) and 38 healthy adults (aged 18–45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6–56.7) and symptomatic patients (136, 40.8–445) compared to controls (5.6, 4.5–7.1), and highest among patients with late-infantile (456, 201–854) or early-juvenile metachromatic leukodystrophy (291.0, 104–445) and those ineligible for treatment based on best practice (291, 57.4–472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224–1150) compared to controls (119, 78.2–338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Nierkens and Lindemans group, Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands
| | - Hans Heijst
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Birthe Roos
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HV Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HV Amsterdam, The Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, 10065 New York, USA
| | - Caroline A Lindemans
- Nierkens and Lindemans group, Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands.,Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Peter M van Hasselt
- Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144:2954-2963. [PMID: 34180982 PMCID: PMC8634125 DOI: 10.1093/brain/awab241] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis is a highly heterogeneous disease, and the detection of neuroaxonal damage as well as its quantification is a critical step for patients. Blood-based serum neurofilament light chain (sNfL) is currently under close investigation as an easily accessible biomarker of prognosis and treatment response in patients with multiple sclerosis. There is abundant evidence that sNfL levels reflect ongoing inflammatory-driven neuroaxonal damage (e.g. relapses or MRI disease activity) and that sNfL levels predict disease activity over the next few years. In contrast, the association of sNfL with long-term clinical outcomes or its ability to reflect slow, diffuse neurodegenerative damage in multiple sclerosis is less clear. However, early results from real-world cohorts and clinical trials using sNfL as a marker of treatment response in multiple sclerosis are encouraging. Importantly, clinical algorithms should now be developed that incorporate the routine use of sNfL to guide individualized clinical decision-making in people with multiple sclerosis, together with additional fluid biomarkers and clinical and MRI measures. Here, we propose specific clinical scenarios where implementing sNfL measures may be of utility, including, among others: initial diagnosis, first treatment choice, surveillance of subclinical disease activity and guidance of therapy selection.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D'Hebron, Cemcat, Barcelona, Spain
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:642384. [PMID: 33889068 PMCID: PMC8055958 DOI: 10.3389/fnins.2021.642384] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease of the central nervous system characterized by demyelination and axonal damage. Diagnosis and prognosis are mainly assessed through clinical examination and neuroimaging. However, more sensitive biomarkers are needed to measure disease activity and guide treatment decisions in MS. Prompt and individualized management can reduce inflammatory activity and delay disease progression. Neurofilament Light chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular fluid following axonal injury, has been identified as a biomarker of disease activity in MS. Measurement of NfL levels can capture the extent of neuroaxonal damage, especially in early stages of the disease. A growing body of evidence has shown that NfL in cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis and treatment response. More recently, NfL has been shown to facilitate individualized treatment decisions for individuals with MS. In this review, we discuss the characteristics that make NfL a highly informative biomarker and depict the available technologies used for its measurement. We further discuss the growing role of serum and CSF NfL in MS research and clinical settings. Finally, we address some of the current topics of debate regarding the use of NfL in clinical practice and examine the possible directions that this biomarker may take in the future.
Collapse
Affiliation(s)
- Carolina Ferreira-Atuesta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Saúl Reyes
- Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovanonni
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Sharmilee Gnanapavan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
30
|
Armangue T, Capobianco M, de Chalus A, Laetitia G, Deiva K. E.U. paediatric MOG consortium consensus: Part 3 - Biomarkers of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29:22-31. [PMID: 33191096 DOI: 10.1016/j.ejpn.2020.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
A first episode of acquired demyelinating disorder (ADS) in children is a diagnostic challenge as different diseases can express similar clinical features. Recently, antibodies against myelin oligodendrocyte glycoprotein (MOG) have emerged as a new ADS biomarker, which clearly allow the identification of monophasic and relapsing ADS forms different from MS predominantly in children. Due to the novelty of this antibody there are still challenges and controversies about its pathogenicity and best technique to detect it. In this manuscript we will discuss the recommendations and caveats on MOG antibody assays, role in the pathogenesis, and additionally discuss the usefulness of other potential new biomarkers in MOG-antibody associated disorders (MOGAD).
Collapse
Affiliation(s)
- Thaís Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu (SJD) Children's Hospital, University of Barcelona, Barcelona, Spain.
| | - Marco Capobianco
- Department of Neurology and Regional Multiple Sclerosis Centre, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Aliénor de Chalus
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Giorgi Laetitia
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Assistance Publique-Hôpitaux de Paris, Pediatric Neurology Department, University Hospitals Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France; French Reference Network of Rare Inflammatory Brain and Spinal Diseases, Le Kremlin Bicêtre, France and European Reference Network-RITA, France
| | | |
Collapse
|
31
|
Evers KS, Hügli M, Fouzas S, Kasser S, Pohl C, Stoecklin B, Bernasconi L, Kuhle J, Wellmann S. Serum Neurofilament Levels in Children With Febrile Seizures and in Controls. Front Neurosci 2020; 14:579958. [PMID: 33132834 PMCID: PMC7550525 DOI: 10.3389/fnins.2020.579958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Neuroaxonal damage is reflected by serum neurofilament light chain (sNfL) values in a variety of acute and degenerative diseases of the brain. The aim of this study was to investigate the impact of febrile and epileptic seizures on sNfL, serum copeptin, and prolactin levels in children compared with children with febrile infections without convulsions. Methods A prospective cross-sectional study was performed in children aging 6 months to 5 years presenting with fever (controls, n = 61), febrile seizures (FS, n = 78), or epileptic seizures (ES, n = 16) at our emergency department. sNfL, copeptin, and prolactin were measured within a few hours after the event in addition to standard clinical, neurophysiological, and laboratory assessment. All children were followed up for at least 1 year after presentation concerning recurrent seizures. Results Serum copeptin values were on average 4.1-fold higher in FS and 3.2-fold higher in ES compared with controls (both p < 0.01). Serum prolactin values were on average 1.3-fold higher in FS compared with controls ( p < 0.01) and without difference between ES and controls. There was no significant difference of mean sNfL values (95% CI) between all three groups, FS 21.7 pg/ml (19.6–23.9), ES 17.7 pg/ml (13.8–21.6), and controls 23.4 pg/ml (19.2–27.4). In multivariable analysis, age was the most important predictor of sNfL, followed by sex and C reactive protein. Neither the duration of seizures nor the time elapsed from seizure onset to blood sampling had an impact on sNfL. None of the three biomarkers were related to recurrent seizures. Significance Serum neurofilament light is not elevated during short recovery time after FS when compared with children presenting febrile infections without seizures. We demonstrate an age-dependent decrease of sNfL from early childhood until school age. In contrast to sNfL levels, copeptin and prolactin serum levels are elevated after FS.
Collapse
Affiliation(s)
- Katrina S Evers
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Melanie Hügli
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Sotirios Fouzas
- Paediatric Respiratory Unit and Department of Neonatology, University Hospital of Patras, Patras, Greece
| | - Severin Kasser
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Christian Pohl
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Neonatal Intensive Care Unit, Perth Children's and King Edward Memorial Hospitals, Perth, WA, Australia
| | - Benjamin Stoecklin
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- Division of Neonatology and University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Division of Neonatology, University Children's Hospital Regensburg (KUNO), University of Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Abstract
OBJECTIVES To characterize neurofilament light levels in children who achieved return of spontaneous circulation following cardiac arrest compared with healthy controls and determine an association between neurofilament light levels and clinical outcomes. DESIGN Retrospective cohort study. SETTING Academic quaternary PICU. PATIENTS Children with banked plasma samples from an acute respiratory distress syndrome biomarker study who achieved return of spontaneous circulation after a cardiac arrest and healthy controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Neurofilament light levels were determined with a highly sensitive single molecule array digital immunoassay. Patients were categorized into survivors and nonsurvivors and into favorable (Pediatric Cerebral Performance Category score of 1-2 or unchanged from baseline) or unfavorable (Pediatric Cerebral Performance Category score of 3-6 or Pediatric Cerebral Performance Category score change ≥1 from baseline). Associations between neurofilament light level and outcomes were determined using Wilcoxon rank-sum test. We enrolled 32 patients with cardiac arrest and 18 healthy controls. Demographics, severity of illness, and baseline Pediatric Cerebral Performance Category scores were similar between survivors and nonsurvivors. Healthy controls had lower median neurofilament light levels than patients after cardiac arrest (5.5 [interquartile range 5.0-8.2] vs 31.0 [12.0-338.6]; p < 0.001). Neurofilament light levels were higher in nonsurvivors than survivors (78.5 [26.2-509.1] vs 12.4 [10.3-28.2]; p = 0.012) and higher in survivors than healthy controls (p = 0.009). The four patients who survived with a favorable outcome had neurofilament light levels that were not different from patients with unfavorable outcomes (21.9 [8.5--35.7] vs 37.2 [15.4-419.1]; p = 0.60) although two of the four patients who survived with favorable outcomes had progressive encephalopathies with both baseline and postcardiac arrest Pediatric Cerebral Performance Category scores of 4. CONCLUSIONS Neurofilament light is a blood biomarker of hypoxic-ischemic brain injury and may help predict survival and neurologic outcome after pediatric cardiac arrest. Further study in a larger, dedicated cardiac arrest cohort with serial longitudinal measurements is warranted.
Collapse
|
33
|
Reinert MC, Benkert P, Wuerfel J, Michalak Z, Ruberte E, Barro C, Huppke P, Stark W, Kropshofer H, Tomic D, Leppert D, Kuhle J, Brück W, Gärtner J. Serum neurofilament light chain is a useful biomarker in pediatric multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e749. [PMID: 32404429 PMCID: PMC7238898 DOI: 10.1212/nxi.0000000000000749] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Objective To investigate serum neurofilament light chain (sNfL) as a potential biomarker for disease activity and treatment response in pediatric patients with multiple sclerosis (MS). Methods In this retrospective cohort study, sNfL levels were measured in a pediatric MS cohort (n = 55, follow-up 12–105 months) and in a non-neurologic pediatric control cohort (n = 301) using a high-sensitivity single-molecule array assay. Association of sNfL levels and treatment and clinical and MRI parameters were calculated. Results Untreated patients had higher sNfL levels than controls (median 19.0 vs 4.6 pg/mL; CI [4.732, 6.911]), p < 0.001). sNfL levels were significantly associated with MRI activity (+9.1% per contrast-enhancing lesion, CI [1.045, 1.138], p < 0.001; +0.6% per T2-weighted lesion, CI [1.001, 1.010], p = 0.015). Higher values were associated with a relapse <90 days ago (+51.1%; CI [1.184, 1.929], p < 0.001) and a higher Expanded Disability Status Scale score (CI [1.001, 1.240], p = 0.048). In patients treated with interferon beta-1a/b (n = 27), sNfL levels declined from 14.7 to 7.9 pg/mL after 6 ± 2 months (CI [0.339, 0.603], p < 0.001). Patients with insufficient control of clinical or MRI disease activity under treatment with interferon beta-1a/b or glatiramer acetate who switched to fingolimod (n = 18) showed a reduction of sNfL levels from 16.5 to 10.0 pg/mL 6 ± 2 months after switch (CI [0.481, 0.701], p < 0.001). Conclusions sNfL is a useful biomarker for monitoring disease activity and treatment response in pediatric MS. It is most likely helpful to predict disease severity and to guide treatment decisions in patients with pediatric MS. This study provides Class III evidence that sNfL levels are associated with disease activity in pediatric MS.
Collapse
Affiliation(s)
- Marie-Christine Reinert
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany.
| | - Pascal Benkert
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Jens Wuerfel
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Zuzanna Michalak
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Esther Ruberte
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Christian Barro
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Peter Huppke
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Wiebke Stark
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Harald Kropshofer
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Davorka Tomic
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - David Leppert
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Jens Kuhle
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Wolfgang Brück
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Jutta Gärtner
- From the Department of Pediatrics and Adolescent Medicine (M.-C.R., P.H., W.S., J.G.), Division of Pediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Medical Image Analysis Centre Basel (MIAC AG) (J.W., E.R.); Department of Biomedical Engineering (J.W.), University Basel; Neurologic Clinic and Policlinic (Z.M., C.B., D.L., J.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel; Novartis Pharma AG (H.K., D.T.), Basel, Switzerland; and Institute of Neuropathology (W.B.), University Medical Centre Göttingen, Georg August University Göttingen, Germany
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW With the recognition that pediatric-onset multiple sclerosis (POMS) is characterized by more prominent disease activity, earlier age at onset of disability milestones, and more prominent cognitive impairment compared with physical disability earlier in the disease course compared with adult-onset multiple sclerosis (AOMS), there has been increasing interest in identifying optimal and safe treatment approaches to achieve better disease control in this group. Injectable therapies have been traditionally used as first line in this population, although not formally approved. This review focuses on current treatment and monitoring approaches in POMS. RECENT FINDINGS In the past few years, and despite the paucity of FDA-approved medications for use in POMS, an increasing trend toward using newer disease-modifying therapies (DMTs) in this group is observed. However, escalation (as opposed to induction) remains the most frequent approach, and many children continue to be untreated before age 18, particularly before age 12. The only FDA- and EMA-approved disease-modifying therapy in POMS is fingolimod; however, dimethyl fumarate, teriflunomide, natalizumab, ocrelizumab, and alemtuzumab either have been evaluated in observational studies or are being currently investigated in formal randomized controlled trials for use in POMS and appear to be safe in this group. Autologous hematopoietic stem cell transplantation has also been evaluated in a small series. Clinical outcome measures and MS biomarkers have been poorly studied in POMS; however, the use of composite functional scores, neurofilament light chain, optical coherence tomography, and imaging findings is being increasingly investigated to improve early diagnosis and efficient monitoring of POMS. Off-label use of newer DMTs in POMS is increasing, and based on retrospective data, and phase 2 trials, this approach appears to be safe in children. Results from ongoing trials will help clarify the safety and efficacy of these therapies in the future. Fingolimod is the only FDA-approved medication for use in POMS. Outcome measures and biomarkers used in AOMS are being studied in POMS and are greatly needed to quantify treatment response in this group.
Collapse
|
35
|
Wong YYM, Bruijstens AL, Barro C, Michalak Z, Melief MJ, Wierenga AF, van Pelt ED, Neuteboom RF, Kuhle J, Hintzen RQ. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology 2019; 93:e968-e974. [DOI: 10.1212/wnl.0000000000008057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo explore the correlation between serum and CSF neurofilament light chain (NfL) and the association of NfL levels and future disease activity in pediatric patients with a first attack of acquired demyelinating syndromes (ADS).MethodsIn total, 102 children <18 years with a first attack of CNS demyelination and 23 age-matched controls were included. Clinically definite multiple sclerosis (CDMS) was set as an endpoint for analysis. CSF NfL was tested by the commercially available ELISA (UmanDiagnostics); serum NfL (sNfL) was tested with a Simoa assay. Hazard ratios (HR) were calculated with Cox regression analysis.ResultsOf the 102 patients, 47 (46%) were tested for CSF NfL. CSF and serum NfL correlated significantly in the total group (ρ 0.532, p < 0.001) and even more significantly in the subgroup of patients with future CDMS diagnosis (ρ 0.773, p < 0.001). sNfL was higher in patients than in controls (geometric mean 6.1 pg/mL, p < 0.001), and was highest in ADS presenting with encephalopathy (acute disseminated encephalomyelitis, n = 28, 100.4 pg/mL), followed by patients without encephalopathy (ADS−) with future CDMS diagnosis (n = 40, 32.5 pg/mL), and ADS− who remained monophasic (n = 34, 17.6 pg/mL). sNfL levels higher than a median of 26.7 pg/mL at baseline are associated with a shorter time to CDMS diagnosis in ADS− (p = 0.045). HR for CDMS diagnosis was 1.09 for each 10 pg/mL increase of sNfL, after correction for age, oligoclonal bands, and MRI measures (p = 0.012).ConclusionThe significant correlation between CSF and serum NfL strengthens its reliability as a peripheral marker of neuroaxonal damage. Higher sNfL levels at baseline were associated with higher probability of future CDMS diagnosis in ADS−.
Collapse
|
36
|
Akgün K, Kretschmann N, Haase R, Proschmann U, Kitzler HH, Reichmann H, Ziemssen T. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e555. [PMID: 31119188 PMCID: PMC6501638 DOI: 10.1212/nxi.0000000000000555] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
Abstract
Objective To evaluate individual neurofilament light chain (NfL) variation over the time of disease course and the potential of NfL measurement to predict treatment response in patients with MS. Methods We investigated 15 patients with MS after immune reconstitution treatment with alemtuzumab (ATZ). Monthly serum NfL (sNFL) measurements were correlated with Expanded Disability Status Scale (EDSS), MRI, and relapse activity over an observational period of up to 102 months. Results Before ATZ, sNfL was significantly increased in correlation with previous relapse/MRI activity. After ATZ, sNfL decreased quickly within the first 6 months. In patients classified as NEDA-3, sNfL declined and persisted at an individual low steady-state level of <8 pg/mL. During follow-up, 34 sNfL peaks with a >20 fold increase could be detected, which were associated with clinical or MRI disease activity. Even patient-reported relapse-suspicious symptoms, which have not been confirmed because relapses were accompanied by sNfL, increase, proposing sNfL assessment as a marker for relapse activity. sNfL started to increase earliest 5 months before, peaked at clinical onset, and recovered within 4–5 months. sNfL presented at higher levels in active patients requiring ATZ retreatment compared with responder patients. During 2 documented pregnancies, sNfL was at a low level, whereas a postpartum transient sNfL increase was seen without any signs of activity. Conclusions This study applied a long-term high-frequency sNfL assessment in an ATZ-treated cohort, allowing a holistic profiling on the individual level and highlighted that sNfL can eminently complement the individual clinical and MRI monitoring in clinical practice.
Collapse
Affiliation(s)
- Katja Akgün
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Nicole Kretschmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Hagen H Kitzler
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Heinz Reichmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| |
Collapse
|