1
|
Machado-Vieira R, Jones GH, Courtes AC, Ruiz AC, Vecera CM, Henter ID, Lane SD, Zarate CA, Soares JC. The effect of intranasal (R,S)-ketamine on symptoms of fatigue in severe major depressive disorder or bipolar depression with and without comorbid alcohol use disorder: Results from a randomized, double-blind, placebo-controlled trial. J Affect Disord 2024; 367:281-285. [PMID: 39214377 DOI: 10.1016/j.jad.2024.08.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fatigue is a multidimensional condition that may overlap with depression. Initial studies found that fatigue responds in only a limited way to standard monoaminergic antidepressants and mood stabilizers but does respond positively to intravenous (IV) racemic (R,S)-ketamine (ketamine). However, IV ketamine's use is limited by cost and access barriers. To date, no study has evaluated intranasal (IN) ketamine in individuals with fatigue. This study sought to evaluate the anti-fatigue effects of a single 50 mg dose of IN ketamine in individuals with major depressive disorder (MDD) or bipolar depression (BDep), both with and without comorbid alcohol use disorder (AUD). METHODS Twenty-eight individuals with primary diagnoses of MDD or BDep I/II currently experiencing a depressive episode with active suicidality were enrolled; approximately 60 % had comorbid AUD. Changes in the NIH-Brief Fatigue Inventory (NIH-BFI) were assessed at baseline and at 4, 24, and 48 h post-treatment. RESULTS The group x time interaction for NIH-BFI score was significant (F = 3.44, p = 0.022), favoring IN ketamine over placebo. IN ketamine was well-tolerated with minimal adverse effects. LIMITATIONS Limitations include the limited sample size, short duration, and single, fixed dose. CONCLUSIONS IN ketamine appears to induce rapid anti-fatigue effects in individuals with severe MDD and BDep both with and without comorbid AUD. This suggests that IN ketamine holds potential as an alternative, rapid-acting, anti-fatigue option for different medical conditions.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA; Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alan C Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Ana C Ruiz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
2
|
Al‐kuraishy HM, Sulaiman GM, Mohammed HA, Albukhaty S, Albuhadily AK, Al‐Gareeb AI, Klionsky DJ, Abomughaid MM. The Compelling Role of Brain-Derived Neurotrophic Factor Signaling in Multiple Sclerosis: Role of BDNF Activators. CNS Neurosci Ther 2024; 30:e70167. [PMID: 39654365 PMCID: PMC11628746 DOI: 10.1111/cns.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, acting as a neurotrophic signal and neuromodulator in the central nervous system (CNS). BDNF is synthesized from its precursor proBDNF within the CNS and peripheral tissues. Through activation of NTRK2/TRKB (neurotrophic receptor tyrosine kinase 2), BDNF promotes neuronal survival, synaptic plasticity, and neuronal growth, whereas it inhibits microglial activation and the release of pro-inflammatory cytokines. BDNF is dysregulated in different neurodegenerative diseases and depressions. However, there is a major controversy concerning BDNF levels in the different stages of multiple sclerosis (MS). Therefore, this review discusses the potential role of BDNF signaling in stages of MS, and how BDNF modulators affect the pathogenesis and outcomes of this disease.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied SciencesUniversity of TechnologyBaghdadIraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityQassimSaudi Arabia
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesUniversity of BishaBishaSaudi Arabia
| |
Collapse
|
3
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Pukoli D, Vécsei L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int J Mol Sci 2023; 24:12631. [PMID: 37628811 PMCID: PMC10454160 DOI: 10.3390/ijms241612631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Immune cell infiltration can lead to permanent activation of macrophages and microglia in the parenchyma, resulting in demyelination and neurodegeneration. Thus, neurodegeneration that begins with acute lymphocytic inflammation may progress to chronic inflammation. This chronic inflammation is thought to underlie the development of so-called smouldering lesions. These lesions evolve from acute inflammatory lesions and are associated with continuous low-grade demyelination and neurodegeneration over many years. Their presence is associated with poor disease prognosis and promotes the transition to progressive MS, which may later manifest clinically as progressive MS when neurodegeneration exceeds the upper limit of functional compensation. In smouldering lesions, in the presence of only moderate inflammatory activity, a toxic environment is clearly identifiable and contributes to the progressive degeneration of neurons, axons, and oligodendrocytes and, thus, to clinical disease progression. In addition to the cells of the immune system, the development of oxidative stress in MS lesions, mitochondrial damage, and hypoxia caused by the resulting energy deficit and iron accumulation are thought to play a role in this process. In addition to classical immune mediators, this chronic toxic environment contains high concentrations of oxidants and iron ions, as well as the excitatory neurotransmitter glutamate. In this review, we will discuss how these pathobiochemical markers and mechanisms, alone or in combination, lead to neuronal, axonal, and glial cell death and ultimately to the process of neuroinflammation and neurodegeneration, and then discuss the concepts and conclusions that emerge from these findings. Understanding the role of these pathobiochemical markers would be important to gain a better insight into the relationship between the clinical classification and the pathomechanism of MS.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Esztergomi Vaszary Kolos Hospital, 2500 Esztergom, Hungary;
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Ghajarzadeh M, Roman S, Vega L, Nourbakhsh B. Low-dose ketamine infusion for the treatment of multiple sclerosis fatigue (INKLING-MS): Study protocol for a randomized, double-blind, active placebo-controlled phase II trial. Contemp Clin Trials 2023; 126:107106. [PMID: 36738917 DOI: 10.1016/j.cct.2023.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fatigue is one of the most common symptoms of people with Multiple Sclerosis (MS). However, currently-used medications for the treatment of fatigue probably do not work better than a placebo. In a pilot trial, we showed that one infusion of low-dose ketamine significantly improved fatigue severity measured four weeks after the infusion. METHODS The proposed study is a single-center, phase II, randomized, double-blind, parallel-group, active-placebo-controlled trial of intravenous low-dose ketamine in patients with MS fatigue. Participants will be randomized 1:1:1 into three groups: receiving either one or two infusions of ketamine (0.5 mg/kg over 40 min) or zero to one infusion of the active placebo (midazolam, 0.05 mg/kg over 40 min). Eligibility criteria include adult patients diagnosed with MS based on the latest criteria, complaining of fatigue as one of the main symptoms, and having a screening MFIS score higher than a pre-specified threshold. RESULTS One hundred and ten participants will be randomized over 30 months at Johns Hopkins MS Center. Complete enrollment is expected by mid-2025. The study's primary outcome will be the MFIS score at the end of week 4, comparing two-thirds of the participants who received ketamine with one-third who received midazolam. The secondary and exploratory outcomes (measured four weeks after the second infusion) will show how long the effects of a single infusion last and if two infusions of ketamine are better than one in improving MS fatigue. CONCLUSION This study can show whether intervening in the glutamatergic pathways would improves MS fatigue.
Collapse
Affiliation(s)
- Mahsa Ghajarzadeh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Roman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Vega
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Stefanov K, Al-Wasity S, Parkinson JT, Waiter GD, Cavanagh J, Basu N. Brain mapping inflammatory-arthritis-related fatigue in the pursuit of novel therapeutics. THE LANCET. RHEUMATOLOGY 2023; 5:e99-e109. [PMID: 38251542 DOI: 10.1016/s2665-9913(23)00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/26/2023]
Abstract
Despite developments in pharmacological treatments, chronic fatigue is an unresolved issue for most people with inflammatory arthritis that severely disrupts their personal and working lives. Fatigue in these patients is not strongly linked with peripheral disease activity but is associated with CNS-derived symptoms such as chronic pain, sleep disturbance, and depression. Therefore, a neurobiological basis should be considered when pursuing novel fatigue-specific therapeutics. In this Review, we focus on clinical imaging biomarkers that map candidate brain regions and are crucial in fatigue pathophysiology. We then evaluate neuromodulation techniques that could affect these candidate brain regions and are potential treatment strategies for fatigue in patients with inflammatory arthritis. We delineate work that is still required for neuroimaging and neuromodulation to eventually become part of a clinical pathway to treat and manage fatigue.
Collapse
Affiliation(s)
- Kristian Stefanov
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Salim Al-Wasity
- School of Infection and Immunity, University of Glasgow, Glasgow, UK; College of Engineering, University of Wasit, Al Kūt, Iraq
| | - Joel T Parkinson
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Gordon D Waiter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Cavanagh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Neil Basu
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Marchesi O, Vizzino C, Filippi M, Rocca MA. Current perspectives on the diagnosis and management of fatigue in multiple sclerosis. Expert Rev Neurother 2022; 22:681-693. [PMID: 35881416 DOI: 10.1080/14737175.2022.2106854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fatigue is a common and debilitating symptom among multiple sclerosis (MS) patients with a prevalence up to 81% and with a considerable impact on quality of life. However, its subjective nature makes it difficult to define and quantify in clinical practice. Research aimed at a more precise definition and knowledge of this construct is thus continuously growing. AREAS COVERED This review summarizes the most relevant updates available on PubMed up to July 1st 2022 regarding: the assessment methods that aim to measure the concept of fatigue (as opposed to fatigability), the possible treatment pathways currently available to clinicians, interconnection with the pathophysiological substrates and with the common comorbidities of MS, such as depression and mood disorders. EXPERT OPINION The in-depth study of fatigue can help to better understand its actual impact on MS patients and can stimulate clinicians towards a more valid approach, through a targeted analysis of this symptom. Considering fatigue from a multidimensional perspective allows the use of patient-tailored methods for its identification and subsequent treatment by different professional figures. Better identification of methods and treatment pathways would reduce the extremely negative impact of fatigue on MS patients' quality of life.
Collapse
Affiliation(s)
- Olga Marchesi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Vizzino
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit and IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
(R)-ketamine as prophylactic and therapeutic drug for neurological disorders: beyond depression. Neurosci Biobehav Rev 2022; 139:104762. [PMID: 35779628 DOI: 10.1016/j.neubiorev.2022.104762] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022]
Abstract
Neurological disorders are the leading cause of disability and the second leading cause of death worldwide. The increasing social and economic burdens of neurological disorders are driven by global population growth and aging. Depression is a common psychiatric symptom in numerous neurological disorders. It is also a risk factor for Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD), and stroke. The rapid-acting and sustained antidepressant actions of (R,S)-ketamine for severe depression was accidentally discovered. Interestingly, (R)-ketamine has greater potency and longer-lasting antidepressant-like effects than (S)-ketamine in rodents. Importantly, its side effects in rodents and humans are lower than those of (R,S)-ketamine and (S)-ketamine. Furthermore, (R)-ketamine could elicit beneficial actions in various rodent models of neurological disorders, including PD, multiple sclerosis (MS), and stroke. In this article, we review the potential of (R)-ketamine as a prophylactic or therapeutic drug for neurological disorders including AD and other dementias, PD, MS, and stroke.
Collapse
|
9
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
10
|
Corkery JM, Hung WC, Claridge H, Goodair C, Copeland CS, Schifano F. Recreational ketamine-related deaths notified to the National Programme on Substance Abuse Deaths, England, 1997-2019. J Psychopharmacol 2021; 35:1324-1348. [PMID: 34092131 PMCID: PMC8600594 DOI: 10.1177/02698811211021588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ketamine is a phencyclidine derivative with dissociative anaesthetic properties. Increasing numbers of individuals in England take ketamine recreationally. Information on deaths arising from such use in England is presented. METHODS Cases were extracted on 31 January 2020 from the National Programme on Substance Abuse Deaths database, based on text searches of the cause of death, coroner's verdict and positive toxicology results for the terms 'ketamine' or 'norketamine'. FINDINGS During 1997-2005, there were <5 deaths p.a. in which ketamine was implicated. Numbers increased until 2009 (21), plateauing until 2016; thereafter, deaths have risen to about 30 p.a. Decedents' characteristics (N = 283): male 84.1%, mean age 31.2 (SD 10.0) years, employed 56.5%, drug use history 79.6% and living with others 60.3%. Ketamine was detected with other substances in most cases. Main (74.6%) underlying cause of death was accidental poisoning. Ketamine may have impaired judgement in other cases. CONCLUSIONS Although controlled, recreational ketamine use and related fatalities continue to increase. Consumers need to be more aware of the potentially fatal risks they face.
Collapse
Affiliation(s)
- John Martin Corkery
- Psychopharmacology, Drug Misuse and
Novel Psychoactive Substances Research Unit, Department of Clinical, Pharmaceutical
and Biological Sciences, University of Hertfordshire, Hatfield, Hertfordshire,
UK
- John Martin Corkery, Psychopharmacology,
Drug Misuse and Novel Psychoactive Substances Research Unit, Department of
Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire,
Room 2F419, Health Research Building, College Lane Campus, Hatfield, Herts AL10
9AB, UK.
| | - Wan-Chu Hung
- Institute of Pharmaceutical Sciences,
King’s College London, London, UK
| | - Hugh Claridge
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Christine Goodair
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Caroline S Copeland
- Institute of Pharmaceutical Sciences,
King’s College London, London, UK
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and
Novel Psychoactive Substances Research Unit, Department of Clinical, Pharmaceutical
and Biological Sciences, University of Hertfordshire, Hatfield, Hertfordshire,
UK
| |
Collapse
|