1
|
Gill A, Eltawansy S, Karamat RI, Nadeem ZA, Esposito S, Karamat SI, Aamir M, Anwaar A, Akilimali A. The diagnostic challenge of differentiating tumefactive multiple sclerosis (TMS) from other brain lesions: a case report and literature review on a rare subtype of MS. Ann Med Surg (Lond) 2024; 86:7418-7422. [PMID: 39649871 PMCID: PMC11623848 DOI: 10.1097/ms9.0000000000002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction and importance This case report is a clinical diagnosis walk through of a rare subtype of multiple sclerosis (MS). It gives an overview of how tumefactive multiple sclerosis (TMS) is systematically narrowed down as the definitive diagnosis. Case presentation This 29-year-old male patient presented to the emergency department. He collapsed after experiencing pain over his right frontotemporal region followed by a seizure witnessed by his family. Magnetic Resonance Imaging of the brain displayed diffuse enlargement and abnormal T2 weighted and FLAIR hyperintense signals in the diagnostic impressions described by the radiologist of the right temporoparietal region. Clinical discussion Liquefactive multiple sclerosis, also known as tumefactive multiple sclerosis or Marburg-type multiple sclerosis, is a rare subtype of the neurological disorder that can be difficult to diagnose. Unlike the traditional form of MS, TMS can present as a brain tumor and must be diagnosed with a biopsy rather than via MRI and clinical findings alone. Patients can typically present with headache, cognitive abnormalities, mental confusion, aphasia, apraxia, seizures, and weakness. Here, the authors discuss the presentation, disease diagnosis process and patient management. Conclusion The patient was stabilized and discharged with a referral to the neurosurgery and neurology departments for outpatient consultation for future clinical management and treatment of their condition.
Collapse
Affiliation(s)
- Anosh Gill
- Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
| | - Sherif Eltawansy
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | | | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Sarah Esposito
- Department of Neurosurgery, Mayo Clinic Hospital, Phoenix, Arizona
| | | | | | | | | |
Collapse
|
2
|
Galetta K, Ham AS, Vishnevetsky A, Bhattacharyya S, Mateen FJ. Disease modifying therapy in the treatment of tumefactive multiple sclerosis: A retrospective cohort study. J Neuroimmunol 2024; 388:578299. [PMID: 38364529 DOI: 10.1016/j.jneuroim.2024.578299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Tumefactive multiple sclerosis (TMS) is characterized by large demyelinating brain lesions. This was a retrospective cohort study of 67 patients with TMS between January 2015-2023, examining different disease modifying therapy impact on expanded disability scale score change at follow-up. Median age was 36 with a female predominance. Mean EDSS was 3.3 ± 2.3 at TMS onset, 2.1 ± 1.9 at year one, and 2.1 ± 1.9 at last follow-up. A multilinear regression model found higher presentation EDSS and post-diagnosis non-B-cell high efficacy therapies were each independently associated with higher EDSS at last follow up. Further research is needed to determine the value of B-cell therapy in TMS.
Collapse
Affiliation(s)
- Kristin Galetta
- Department of Neurology, Stanford University, Palo Alto, CA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Andrew Siyoon Ham
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Abstract
Multiple sclerosis (MS) misdiagnosis in the form of an incorrect diagnosis of MS, as well as delayed diagnosis in patients who do have MS, both influence patient clinical outcomes. Contemporary studies have reported data on factors associated with these diagnostic challenges and their frequency. Expediting diagnosis in patients with MS and reducing MS misdiagnosis in patients who do not have MS may be aided by educational efforts surrounding early MS symptoms and proper application of MS diagnostic criteria. Emerging novel MS diagnostic biomarkers may aid early and accurate diagnosis of MS in the future.
Collapse
Affiliation(s)
- Marwa Kaisey
- Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A6600, Los Angeles, CA 90048, USA.
| | - Andrew J Solomon
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, University Health Center, Arnold 2, 1 South Prospect Street, Burlington, VT 05401, USA
| |
Collapse
|
4
|
Fereidan‐Esfahani M, Decker PA, Weigand SD, Lopez Chiriboga AS, Flanagan EP, Tillema J, Lucchinetti CF, Eckel‐Passow JE, Tobin WO. Defining the natural history of tumefactive demyelination: A retrospective cohort of 257 patients. Ann Clin Transl Neurol 2023; 10:1544-1555. [PMID: 37443413 PMCID: PMC10502639 DOI: 10.1002/acn3.51844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To describe demographic, clinical, and radiographic features of tumefactive demyelination (TD) and identify factors associated with severe attacks and poor outcomes. METHODS Retrospective review of TD cases seen at Mayo Clinic, 1990-2021. RESULTS Of 257 patients with TD, 183/257 (71%) fulfilled the 2017 multiple sclerosis (MS) McDonald criteria at the last follow-up, 12/257 (5%) had myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), 0 had aquaporin-4-IgG seropositive neuromyelitis optic spectrum disorders (AQP4+ NMOSD), and 62/257 (24%) were cryptogenic. Onset before age 18 was present in 18/257 (7%). Female to male ratio was 1.3:1. Cerebrospinal fluid oligoclonal (CSF) bands were present in 95/153 (62%). TD was the first demyelinating attack in 176/257 (69%). At presentation, 59/126 (47%) fulfilled Barkhof criteria for dissemination in space, 59/100 (59%) had apparent diffusion coefficient (ADC) restriction, and 57/126 (45%) had mass effect. Despite aggressive clinical presentation at onset, 181/257 (70%) of patients remained fully ambulatory (Expanded Disability Status Scale [EDSS] ≤4) after a 3.0-year median follow-up duration. Severe initial attack-related disability (EDSS ≥4) was more common in patients with motor symptoms (81/143 vs. 35/106, p < 0.0001), encephalopathy (20/143 vs. 2/106, p < 0.0001) and ADC restriction on initial MRI (42/63 vs. 15/33, p = 0.04). Poor long-term outcome (EDSS ≥4) was more common in patients with older onset age (41.9 ± 15 vs. 36.8 ± 15.6, p = 0.02) and motor symptoms at onset (49/76 vs. 66/171, p < 0.0001). INTERPRETATION Most TD patients should be considered part of the MS spectrum after excluding MOGAD and NMOSD. Motor symptoms and older age at presentation portend a poor outcome.
Collapse
Affiliation(s)
- Mahboubeh Fereidan‐Esfahani
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Dell Medical SchoolUniversity of TexasAustinTexasUSA
| | - Paul A Decker
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Stephen D. Weigand
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Eoin P Flanagan
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMinneapolisMinnesotaUSA
| | - Jan‐Mendelt Tillema
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Claudia F Lucchinetti
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | - W. Oliver Tobin
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
5
|
Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L, Banwell BL, Barkhof F, Corboy JR, Correale J, Fujihara K, Graves J, Harnegie MP, Hemmer B, Lechner-Scott J, Marrie RA, Newsome SD, Rocca MA, Royal W, Waubant EL, Yamout B, Cohen JA. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol 2023; 22:750-768. [PMID: 37479377 DOI: 10.1016/s1474-4422(23)00148-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/23/2023]
Abstract
Accurate diagnosis of multiple sclerosis requires careful attention to its differential diagnosis-many disorders can mimic the clinical manifestations and paraclinical findings of this disease. A collaborative effort, organised by The International Advisory Committee on Clinical Trials in Multiple Sclerosis in 2008, provided diagnostic approaches to multiple sclerosis and identified clinical and paraclinical findings (so-called red flags) suggestive of alternative diagnoses. Since then, knowledge of disorders in the differential diagnosis of multiple sclerosis has expanded substantially. For example, CNS inflammatory disorders that present with syndromes overlapping with multiple sclerosis can increasingly be distinguished from multiple sclerosis with the aid of specific clinical, MRI, and laboratory findings; studies of people misdiagnosed with multiple sclerosis have also provided insights into clinical presentations for which extra caution is warranted. Considering these data, an update to the recommended diagnostic approaches to common clinical presentations and key clinical and paraclinical red flags is warranted to inform the contemporary clinical evaluation of patients with suspected multiple sclerosis.
Collapse
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at the University of Vermont, University Health Center, Burlington, VT, USA.
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Wallace J Brownlee
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Eoin P Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology and the Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lilyana Amezcua
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Brenda L Banwell
- Department of Neurology, University of Pennsylvania, Division of Child Neurology, Philadelphia, PA, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - John R Corboy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jorge Correale
- Department of Neurology, Fleni Institute of Biological Chemistry and Physical Chemistry (IQUIFIB), Buenos Aires, Argentina; National Council for Scientific and Technical Research/University of Buenos Aires, Buenos Aires, Argentina
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Koriyama, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Medical Faculty, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jeannette Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, NSW Australia; Hunter Medical Research Institute Neurology, University of Newcastle, Newcastle, NSW, Australia
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Walter Royal
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Emmanuelle L Waubant
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Bassem Yamout
- Neurology Institute, Harley Street Medical Center, Abu Dhabi, United Arab Emirates
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Jackson-Tarlton CS, Keegan BM, Fereidan-Esfahani M, Barakat BO, Decker PA, Lucchinetti CF, Eckel-Passow J, Tobin WO. Spinal cord and brain corticospinal tract lesions are associated with motor progression in tumefactive multiple sclerosis. Mult Scler Relat Disord 2023; 73:104614. [PMID: 36948092 DOI: 10.1016/j.msard.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Spinal cord lesions have been associated with progressive disease in individuals with typical relapsing remitting MS (RRMS). OBJECTIVE In the current study, we aimed to determine if progressive disease is associated with spinal cord lesions in those with tumefactive multiple sclerosis (MS). METHODS Retrospective chart review of individuals presenting to Mayo Clinic with tumefactive MS with spinal cord MRIs available (n=159). Clinical data were extracted by chart review. Brain and spinal cord MRIs were reviewed to characterize the tumefactive demyelinating lesion(s) and assess the burden of spinal cord disease. RESULTS A total of 69 (43%) had spinal cord lesions. Progressive demyelinating disease was documented in 13 (8%); the majority (11/13) with secondary progressive disease. The method of progression was myelopathic in 8/13 (62%), cognitive in 3/13 (23%), motor from a supratentorial lesion in 2/13 (16%). EDSS at last follow-up was higher in those with progression than those without (median 6.0 (2.0-10.0) vs. 2.5 (0-10.0), p = < 0.001). Progressive demyelinating disease occurred in a minority. CONCLUSIONS Patients with progression typically experienced progressive motor impairment, and this occurred exclusively in individuals with lesions in the corticospinal tracts of the brain and/or the spinal cord.
Collapse
Affiliation(s)
- Caitlin S Jackson-Tarlton
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Division of Neurology, Department of Medicine, Dalhousie University, Halifax, NS, USA
| | - B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA
| | - Mahboubeh Fereidan-Esfahani
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Division of Neurology, Department of Medicine, Dalhousie University, Halifax, NS, USA; Dell Medical School at the University of Texas at Austin, Austin, TX, USA
| | - Benan O Barakat
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA; Department of Neurology, Bon Secours Mercy Health St. Vincent Medical Center, Toledo, OH, USA
| | - Paul A Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA
| | | | - W Oliver Tobin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA.
| |
Collapse
|
7
|
Kalinowska-Lyszczarz A, Tillema JM, Tobin WO, Guo Y, Weigand SD, Metz I, Brück W, Lassmann H, Giraldo-Chica M, Port JD, Lucchinetti CF. Long-term clinical, imaging and cognitive outcomes association with MS immunopathology. Ann Clin Transl Neurol 2023; 10:339-352. [PMID: 36759436 PMCID: PMC10014012 DOI: 10.1002/acn3.51723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE In this observational study on a cohort of biopsy-proven central nervous system demyelinating disease consistent with MS, we examined the relationship between early-active demyelinating lesion immunopattern (IP) with subsequent clinical course, radiographic progression, and cognitive function. METHODS Seventy-five patients had at least one early-active lesion on biopsy and were pathologically classified into three immunopatterns based on published criteria. The median time from biopsy at follow-up was 11 years, median age at biopsy - 41, EDSS - 4.0. At last follow-up, the median age was 50, EDSS - 3.0. Clinical examination, cognitive assessment (CogState battery), and 3-Tesla-MRI (MPRAGE/FLAIR/T2/DIR/PSIR/DTI) were obtained. RESULTS IP-I was identified in 14/75 (19%), IP-II was identified in 41/75 (56%), and IP-III was identified in 18/75 (25%) patients. Patients did not differ significantly by immunopattern in clinical measures at onset or last follow-up. The proportions of disease courses after a median of 11 years were similar across immunopatterns, relapsing-remitting being most common (63%), followed by monophasic (32%). No differences in volumetric or DTI measures were found. CogState performance was similar for most tasks. A slight yet statistically significant difference was identified for episodic memory scores, with IP-III patients recalling one word less on average. INTERPRETATION In this study, immunopathological heterogeneity of early-active MS lesions identified at biopsy does not correlate with different long-term clinical, neuroimaging or cognitive outcomes. This could be explained by the fact that while active white matter lesions are pathological substrates for relapses, MS progression is driven by mechanisms converging across immunopatterns, regardless of pathogenic mechanisms driving the acute demyelinated plaque.
Collapse
Affiliation(s)
- Alicja Kalinowska-Lyszczarz
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
| | - Monica Giraldo-Chica
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
8
|
Tillema JM. Imaging of Central Nervous System Demyelinating Disorders. Continuum (Minneap Minn) 2023; 29:292-323. [PMID: 36795881 DOI: 10.1212/con.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article summarizes neuroimaging findings in demyelinating disease, the most common being multiple sclerosis. Revisions to criteria and treatment options have been ongoing, and MRI plays a pivotal role in diagnosis and disease monitoring. The common antibody-mediated demyelinating disorders with their respective classic imaging features are reviewed, as well as the differential diagnostic considerations on imaging. LATEST DEVELOPMENTS The clinical criteria of demyelinating disease rely heavily on imaging with MRI. With novel antibody detection, the range of clinical demyelinating syndromes has expanded, most recently with myelin oligodendrocyte glycoprotein-IgG antibodies. Imaging has improved our understanding of the pathophysiology of multiple sclerosis and disease progression, and further research is underway. The importance of increased detection of pathology outside of the classic lesions will have an important role as therapeutic options are expanding. ESSENTIAL POINTS MRI has a crucial role in the diagnostic criteria and differentiation among common demyelinating disorders and syndromes. This article reviews the typical imaging features and clinical scenarios that assist in accurate diagnosis, differentiation between demyelinating diseases and other white matter diseases, the importance of standardized MRI protocols in clinical practice, and novel imaging techniques.
Collapse
|