1
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
2
|
Guo Y, Wang X, Wang L, Wei X, Duan Y, Yang X, Zhang M, Zhao B. The Value of Superb Microvascular Imaging and Contrast-enhanced Ultrasound for the Evaluation of Neovascularization in Carotid Artery Plaques. Acad Radiol 2023; 30:403-411. [PMID: 36123231 DOI: 10.1016/j.acra.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the consistency between superb microvascular imaging (SMI) and contrast-enhanced ultrasound (CEUS) for the detection of neovascularization in carotid plaques of different thicknesses and to evaluate the applied value of these two methods for detecting neovascularization in carotid plaques in the clinic. METHODS A total of 45 patients with carotid artery plaques who were diagnosed in our hospital involving 76 hypoechoic plaques with a thickness ≥2.0 mm were selected. According to thickness, the plaques were divided into three groups: 2.0-2.5 mm, 2.5-3.0 mm and ≥3.0 mm. Each group underwent both SMI and CEUS, and two experienced sonographers (A and B) analyzed the ultrasound images to evaluate the neovascularization of carotid plaques. The amount of the neovascular signal was assessed using a semi-quantitative grading scale (vascularity grade: grade 0-3). SMI and CEUS were graded respectively according to the visual methods as follows: grade 0: no blood flow signal/enhancement within plaques; grade 1: a few blood flow signals/enhancement within plaques; grade 2: medium blood flow signals/enhancement within plaques; and grade 3: extensive blood flow signals/enhancement within plaques. Kappa consistency test was used to analyze the consistency of the grade of neovascularization in plaques between SMI with CEUS. Gamma rank correlation analysis was used to examine the correlation between neovascularization grade by SMI and CEUS in plaque and plaque thickness. RESULTS Of these patients, 14 had unilateral plaques and 31 had bilateral plaques. The two sonographers were highly consistent in terms of applying SMI and CEUS methods for diagnosing neovascularization in carotid plaques (Kappa values were 0.736 and 0.680>0). Consistency was found between SMI and CEUS by sonographers (sonographer A: Kappa=0.823; sonographer B: Kappa=0.842) in evaluating the neovascular grade in the carotid plaques. SMI and CEUS grades were positively correlated with plaque thickness (sonographer A: γ = 0.735 and 0.772; sonographer B: γ = 0.805 and 0.798). CONCLUSION Neovascularization in carotid plaques was successfully detected by SMI in a manner that concurred well with CEUS results. Our data indicate that both CEUS and SMI have high diagnostic value for assessing the neovascularization of plaques.
Collapse
Affiliation(s)
- Yanqin Guo
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinghua Wang
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaoli Wei
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yinling Duan
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohuan Yang
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
3
|
Song Y, Xing H, Zhang Z, Felix LO. Detection of Carotid Atherosclerotic Intraplaque Neovascularization Using Superb Microvascular Imaging: A Meta-Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2629-2638. [PMID: 33587302 DOI: 10.1002/jum.15652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Although superb microvascular imaging (SMI) (Toshiba/Canon, Tokyo, Japan) has enabled routine characterization of intraplaque neovascularization (IPN) features in patients with carotid stenosis, no reports have been published on the multicenter and large sample size research in this aspect. The efficacy of SMI in detecting carotid IPN has not been concluded. This study aimed to assess the efficacy of SMI comparing with contrast-enhanced carotid ultrasonography (CEUS) in the detection of carotid IPN or pathologic evaluations of IPN correlated with a history of stroke or transient ischemic attack (TIA). METHODS Web of Science, Cochrane Library, PubMed, Embase, and Scopus were searched up to August 2020 to identify peer-reviewed human studies on the diagnostic accuracy of SMI in detecting IPN. For the selected study, the correlation coefficient R and Kappa index between SMI and CEUS in detecting IPN were calculated. The correlation coefficient R between SMI in identifying IPN and pathologic evaluations of IPN and the odds ratio of IPN detected by SMI and history of stroke or TIA were also extracted. The subgroup analysis was performed to indicate the source of heterogeneity. RESULTS Our search identified 11 reports enrolling a total of 605 carotid stenosis patients. Carotid IPN detected by SMI was significantly correlated with which detected by CEUS (R, 0.89; 95% CI, 0.80-0.94; P = .00, and Kappa index, 0.73; 95% CI, 0.67-0.80; P = .00). Notably, a significant correlation was observed in SMI in detecting IPN and pathologic evaluations of IPN (R, 0.52; 95% CI, 0.40-0.62; P = .00). The odds ratio of IPN detected by SMI and history of stroke or TIA was pooled summary with statistical significance (OR, 3.33; 95% CI, 1.78-6.23; P = .00). In subgroup analysis, lower heterogeneity was associated with the degree of carotid stenosis, patients from which country, and types of equipment. CONCLUSIONS SMI and CEUS display an excellent agreement in detecting carotid IPN. IPN detected by SMI shows high consistency with pathologic evaluations of IPN. Individuals with carotid IPN are more likely to develop stroke or TIA than those without carotid IPN.
Collapse
Affiliation(s)
- Yi Song
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hang Xing
- Division of Cardiothoracic Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Zhiqi Zhang
- Division of Cardiothoracic Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Lewis Oscar Felix
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
4
|
Guang Y, He W, Ning B, Zhang H, Yin C, Zhao M, Nie F, Huang P, Zhang RF, Yong Q, Guo Y, Yuan J, Wang Y, Yuan L, Ruan L, Yu T, Song H, Zhang Y. Deep learning-based carotid plaque vulnerability classification with multicentre contrast-enhanced ultrasound video: a comparative diagnostic study. BMJ Open 2021; 11:e047528. [PMID: 34452961 PMCID: PMC8404444 DOI: 10.1136/bmjopen-2020-047528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the performance of deep learning-based detection and classification of carotid plaque (DL-DCCP) in carotid plaque contrast-enhanced ultrasound (CEUS). METHODS AND ANALYSIS A prospective multicentre study was conducted to assess vulnerability in patients with carotid plaque. Data from 547 potentially eligible patients were prospectively enrolled from 10 hospitals, and 205 patients with CEUS video were finally enrolled for analysis. The area under the receiver operating characteristic curve (AUC) was used to evaluate the effectiveness of DL-DCCP and two experienced radiologists who manually examined the CEUS video (RA-CEUS) in diagnosing and classifying carotid plaque vulnerability. To evaluate the influence of dynamic video input on the performance of the algorithm, a state-of-the-art deep convolutional neural network (CNN) model for static images (Xception) was compared with DL-DCCP for both training and holdout validation cohorts. RESULTS The AUCs of DL-DCCP were significantly better than those of the experienced radiologists for both the training and holdout validation cohorts (training, DL-DCCP vs RA-CEUS, AUC: 0.85 vs 0.69, p<0.01; holdout validation, DL-DCCP vs RA-CEUS, AUC: 0.87 vs 0.66, p<0.01), that is, also better than the best deep CNN model Xception we had performed, for both the training and holdout validation cohorts (training, DL-DCCP vs Xception, AUC:0.85 vs 0.82, p<0.01; holdout validation, DL-DCCP vs Xception, AUC: 0.87 vs 0.77, p<0.01). CONCLUSION DL-DCCP shows better overall performance in assessing the vulnerability of carotid atherosclerotic plaques than RA-CEUS. Moreover, with a more powerful network structure and better utilisation of video information, DL-DCCP provided greater diagnostic accuracy than a state-of-the-art static CNN model. TRIAL REGISTRATION NUMBER ChiCTR1900021846.
Collapse
Affiliation(s)
- Yang Guang
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Bin Ning
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Hongxia Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Chen Yin
- Department of R&D, CHISON Medical Technologies Co Ltd, Wuxi, China
| | - Mingchang Zhao
- Department of R&D, CHISON Medical Technologies Co Ltd, Wuxi, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pintong Huang
- Department of Ultrasound, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Rui-Fang Zhang
- Department of Ultrasound, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Qiang Yong
- Department of Ultrasound, Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Jianjun Yuan
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yicheng Wang
- Department of Ultrasound, Hebei North University Basic Medical College, Zhangjiakou, Hebei, China
| | - Lijun Yuan
- Department of Ultrasound, Tangdu Hospital Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Litao Ruan
- Department of Ultrasound, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Haiman Song
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Yukang Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
5
|
Chiba T, Fujiwara S, Oura K, Oikawa K, Chida K, Kobayashi M, Yoshida K, Kubo Y, Maeda T, Itabashi R, Ogasawara K. Superb Microvascular Imaging Ultrasound for Cervical Carotid Artery Stenosis for Prediction of the Development of Microembolic Signals on Transcranial Doppler during Carotid Exposure in Endarterectomy. Cerebrovasc Dis Extra 2021; 11:61-68. [PMID: 34034253 PMCID: PMC8215948 DOI: 10.1159/000516426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction During exposure of the carotid arteries, embolism from the surgical site is recognized as a primary cause of neurological deficits or new cerebral ischemic lesions following carotid endarterectomy (CEA), and associations have been reported between histological neovascularization in the carotid plaque and both plaque vulnerability and the development of artery-to-artery embolism. Superb microvascular imaging (SMI) enables accurate visualization of neovessels in the carotid plaque without the use of intravenous contrast. This study aimed to determine whether preoperative SMI ultrasound for cervical carotid artery stenosis predicts the development of microembolic signals (MES) on transcranial Doppler (TCD) during exposure of the carotid arteries in CEA. Methods Preoperative cervical carotid artery SMI ultrasound followed by CEA under TCD monitoring of MES in the ipsilateral middle cerebral artery was conducted in 70 patients previously diagnosed with internal carotid artery stenosis (defined as ≥70%). First, observers visually identified intraplaque microvascular flow (IMVF) signals as moving enhancements located near the surface of the carotid plaque within the plaque on SMI ultrasonograms. Next, regions of interest (ROI) were manually placed at the identified IMVF signals (or at arbitrary places within the plaque when no IMVF signals were identified within the carotid plaque) and the carotid lumen, and time-intensity curves of the IMVF signal and lumen ROI were generated. Ten heartbeat cycles of both time-intensity curves were segmented into each heartbeat cycle based on gated electrocardiogram findings and averaged with respect to the IMVF signal and lumen ROI. The difference between the maximum and minimum intensities (ID) was calculated based on the averaged IMVF signal (ID<sub>IMVF</sub>) and lumen (ID<sub>l</sub>) curves. Finally, the ratio of ID<sub>IMVF</sub> to ID<sub>l</sub> was calculated. Results MES during exposure of the carotid arteries were detected in 17 patients (24%). The incidence of identification of IMVF signals was significantly greater in patients with MES (94%) than in those without (57%; p = 0.0067). The ID<sub>IMVF</sub>/ID<sub>l</sub> ratio was significantly greater in patients with MES (0.108 ± 0.120) than in those without (0.017 ± 0.042; p < 0.0001). The specificity and positive predictive value for the ID<sub>IMVF</sub>/ID<sub>l</sub> ratio for prediction of the development of MES were significantly higher than those for the identification of IMVF signals. Logistic regression analysis revealed that only the ID<sub>IMVF</sub>/ID<sub>l</sub> ratio was significantly associated with the development of MES (95% CI 101.1–3,628.9; p = 0.0048). Conclusion Preoperative cervical carotid artery SMI ultrasound predicts the development of MES on TCD during exposure of the carotid arteries in CEA.
Collapse
Affiliation(s)
- Takayuki Chiba
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kazumasa Oura
- Department of Neurology and Gerontology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kohki Oikawa
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kokei Chida
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Yoshitaka Kubo
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Tetsuya Maeda
- Department of Neurology and Gerontology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Ryo Itabashi
- Department of Neurology and Gerontology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University School of Medicine, Yahaba, Japan
| |
Collapse
|
6
|
Meng Q, Xie X, Li L, Jiang C, Zhao K, Bai Z, Zheng Z, Yang Y, Yu Y, Zhang H, Zhao X. Assessment of neovascularization of carotid artery atherosclerotic plaques using superb microvascular imaging: a comparison with contrast-enhanced ultrasound imaging and histology. Quant Imaging Med Surg 2021; 11:1958-1969. [PMID: 33936978 DOI: 10.21037/qims-20-933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background This study aimed to investigate the usefulness of superb microvascular imaging (SMI), a novel non-contrast-enhanced ultrasound technique, in characterizing neovessels within carotid atherosclerotic plaques through comparison with contrast-enhanced ultrasound (CEUS) and histology. Methods Patients with carotid plaque were recruited and underwent SMI and CEUS ultrasound imaging of the carotid arteries. The maximum plaque thickness, length, and stenosis of each plaque were measured. Grade of the neovessels was determined by SMI and CEUS, respectively. Grade 0 was defined as no blood flow signal/microbubbles within plaques; grade 1 was defined as moderate blood flow signals/microbubbles confined to the shoulder and/or adventitial side of the plaque; and grade 2 was defined as extensive intraplaque signals/microbubbles. Patients with symptomatic carotid stenosis (stenosis ≥50%) or asymptomatic carotid stenosis (stenosis ≥70%) underwent endarterectomy, and plaque specimens were subjected to immunohistochemical analysis of CD31 expression. The neovessels were quantified by histology. The agreement of SMI with CEUS and histology in characterizing neovessels was analyzed using weighted Kappa statistic and Spearman's correlation analyses. Results Seventy-eight patients (mean age: 67.3±8.9 years old, 63 males) were recruited. Of these patients, 52 (66.7%) had a unilateral plaque and 26 (33.3%) had bilateral plaques in the carotid arteries. For the 104 carotid plaques detected, the mean plaque thickness and length were 4.3±1.1 and 18.8±6.6 mm, respectively. The prevalence of <50%, 50-69%, and ≥70% stenosis was 43.3%, 24.0%, and 32.7%, respectively. Excellent agreement was found between SMI and CEUS (κ=0.825 at the plaque level; κ=0.820 at the patient level) in evaluating the neovessel grade within the carotid plaques. Of the 25 patients who underwent carotid endarterectomy, a strong correlation (r=0.660, P<0.001) was found between SMI and histology in the evaluation of intraplaque neovessels. SMI had excellent scan-rescan (κ=0.857), intra-reader (κ=0.810), and inter-reader (κ=0.754) agreement in the assessment of intraplaque neovessels. Conclusions The SMI technique is capable of reliably characterizing neovessels within carotid atherosclerotic plaques and demonstrates good to excellent agreement with histology and CEUS.
Collapse
Affiliation(s)
- Qi Meng
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xia Xie
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Li Li
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Jiang
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Keqiang Zhao
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhiyong Bai
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yu Yang
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Yu
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Huabin Zhang
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
7
|
Li Y, Zheng S, Zhang J, Wang F, Liu X, He W. Advance ultrasound techniques for the assessment of plaque vulnerability in symptomatic and asymptomatic carotid stenosis: a multimodal ultrasound study. Cardiovasc Diagn Ther 2021; 11:28-38. [PMID: 33708475 DOI: 10.21037/cdt-20-876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Advanced carotid ultrasound techniques may be useful in characterizing plaque vulnerability, but comprehensive studies are still lacking. The aim of this study was to identify factors associated with vulnerable plaques using advanced ultrasound techniques. Methods This is a prospective observational study of patients with >50% internal carotid stenosis (ICA). All patients underwent conventional ultrasound, superb microvascular imaging (SMI) and shear wave elastography (SWE) examinations. Plaque size, echogenicity, stiffness and intraplaque neovascularization (IPN) were assessed and compared between symptomatic and asymptomatic groups. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of SWE and SMI of the vulnerable plaques. Results The final analysis included 123 patients (78.9% male; mean age, 66±8 years), 65 were enrolled in the symptomatic group, and 58 were enrolled in the asymptomatic group. The mean elasticity was 78.1±25.4 kPa for asymptomatic and 51.5±18.3 kPa for symptomatic plaques. Symptomatic plaques showed higher visual IPN grades on SMI than asymptomatic plaques (P<0.001). Multivariate regression analysis showed that plaque stiffness (PS) (OR 0.95, 95% CI, 0.919-0.974) and IPN level (OR 4.17, 95% CI, 2.008-8.664) were independently associated with symptomatic plaques. The combination of the two factors had a preferable accuracy to discriminate symptomatic plaques (AUC 0.89, 95% CI, 0.827-0.944). Conclusions Advanced carotid ultrasound techniques can identify plaque characteristics that are associated with ischemic events and may be potentially indicative of plaque vulnerability. These factors may ultimately be used in the clinical management of carotid stenosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Jinghan Zhang
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Fumin Wang
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Xinyao Liu
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| | - Wen He
- Department of Ultrasound, Capital Medical University, Beijing, China.,Department of Ultrasound, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
8
|
Mantella LE, Liblik K, Johri AM. Vascular imaging of atherosclerosis: Strengths and weaknesses. Atherosclerosis 2021; 319:42-50. [PMID: 33476943 DOI: 10.1016/j.atherosclerosis.2020.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is an inflammatory disease that can lead to several complications such as ischemic heart disease, stroke, and peripheral vascular disease. Therefore, researchers and clinicians rely heavily on the use of imaging modalities to identify, and more recently, quantify the burden of atherosclerosis in the aorta, carotid arteries, coronary arteries, and peripheral vasculature. These imaging techniques vary in invasiveness, cost, resolution, radiation exposure, and presence of artifacts. Consequently, a detailed understanding of the risks and benefits of each technique is crucial prior to their introduction into routine cardiovascular screening. Additionally, recent research in the field of microvascular imaging has proven to be important in the field of atherosclerosis. Using techniques such as contrast-enhanced ultrasound and superb microvascular imaging, researchers have been able to detect blood vessels within a plaque lesion that may contribute to vulnerability and rupture. This paper will review the strengths and weaknesses of the various imaging techniques used to measure atherosclerotic burden. Furthermore, it will discuss the future of advanced imaging modalities as potential biomarkers for atherosclerosis.
Collapse
Affiliation(s)
- Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, K7L 3N6, Kingston, ON, Canada
| | - Kiera Liblik
- Department of Medicine, Cardiovascular Imaging Network at Queen's University, 76 Stuart Street, K7L 2V7, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, K7L 3N6, Kingston, ON, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's University, 76 Stuart Street, K7L 2V7, Kingston, ON, Canada.
| |
Collapse
|