1
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Chen W, Li Y, Li M, Li H, Chen C, Lin Y. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:20. [PMID: 38303096 PMCID: PMC10835982 DOI: 10.1186/s41043-024-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Abdominal aortic calcification (AAC) is an important marker of subclinical atherosclerosis and a predictor of cardiovascular disease. This study aims to explore the association between carotenoid intakes and AAC. METHODS We included 2889 participants from the National Health and Nutrition Examination Survey (NHANES). Dietary carotenoid intakes were obtained through 24-h dietary recall interviews. Severe AAC was defined as a Kauppila score > 5. The main analysis utilizes logistic and restricted cubic spline models. RESULT Severe AAC was detected in 378 (13.08%) participants. In fully adjusted models, the odds ratios (OR) with 95% confidence intervals (CI) of α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein with zeaxanthin and total carotenoid intakes for individuals with severe AAC were 0.53 (0.23-0.77), 0.39 (0.19-0.80), 0.18 (0.05-0.62), 0.40 (0.20-0.78), 0.53 (0.32-0.88) and 0.38 (0.18-0.77) in the highest versus lowest quartile intake, respectively. Dose-response analyses revealed that all of the carotenoids were associated with decreased risk of severe AAC in a nonlinear trend. Total carotenoid intakes of at least 100ug/kg/day were associated with decreased odds for severe AAC. CONCLUSION α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein with zeaxanthin and total carotenoids were inversely associated with the risk of severe AAC in adults.
Collapse
Affiliation(s)
- Weidong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, China
- Department of Integrated Traditional Chinese and Western Medicine Nutrition of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528225, China
| | - Yuanqing Li
- Department of Cardiology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Min Li
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China
| | - Hai Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Caifang Chen
- Department of Integrated Traditional Chinese and Western Medicine Nutrition of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528225, China.
| | - Yanzhao Lin
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
4
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
5
|
Damrath JG, Chen NX, Metzger CE, Srinivasan S, O'Neill K, Biruete A, Avin KG, Wallace JM, Allen MR, Moe SM. Non-Additive Effects of Combined NOX1/4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). JBMR Plus 2022; 6:e10600. [PMID: 35309859 PMCID: PMC8914155 DOI: 10.1002/jbm4.10600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end-stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD-MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT-137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP-2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C-terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8-OHdG in the serum or aorta. KP treatment reduced aortic 8-OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John G Damrath
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| | - Neal X Chen
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Corinne E Metzger
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Shruthi Srinivasan
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Kalisha O'Neill
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Annabel Biruete
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Keith G Avin
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Physical TherapyIndiana University School of Health and Rehabilitation SciencesIndianapolisINUSA
| | - Joseph M Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisINUSA
| | - Matthew R Allen
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Sharon M Moe
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineRoudebush Veterans Administration Medical CenterIndianapolisINUSA
| |
Collapse
|
6
|
Li T, Yu H, Zhang D, Feng T, Miao M, Li J, Liu X. Matrix Vesicles as a Therapeutic Target for Vascular Calcification. Front Cell Dev Biol 2022; 10:825622. [PMID: 35127686 PMCID: PMC8814528 DOI: 10.3389/fcell.2022.825622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023] Open
Abstract
Vascular calcification (VC) is linked to an increased risk of heart disease, stroke, and atherosclerotic plaque rupture. It is a cell-active process regulated by vascular cells rather than pure passive calcium (Ca) deposition. In recent years, extracellular vesicles (EVs) have attracted extensive attention because of their essential role in the process of VC. Matrix vesicles (MVs), one type of EVs, are especially critical in extracellular matrix mineralization and the early stages of the development of VC. Vascular smooth muscle cells (VSMCs) have the potential to undergo phenotypic transformation and to serve as a nucleation site for hydroxyapatite crystals upon extracellular stimulation. However, it is not clear what underlying mechanism that MVs drive the VSMCs phenotype switching and to result in calcification. This article aims to review the detailed role of MVs in the progression of VC and compare the difference with other major drivers of calcification, including aging, uremia, mechanical stress, oxidative stress, and inflammation. We will also bring attention to the novel findings in the isolation and characterization of MVs, and the therapeutic application of MVs in VC.
Collapse
Affiliation(s)
- Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tang Feng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Michael Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Jianwei Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianwei Li, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Jianwei Li, ; Xiaoheng Liu,
| |
Collapse
|
7
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|