1
|
Andrei G, Gillemot S, Topalis D, Snoeck R. The Anti-Human Immunodeficiency Virus Drug Tenofovir, a Reverse Transcriptase Inhibitor, Also Targets the Herpes Simplex Virus DNA Polymerase. J Infect Dis 2019; 217:790-801. [PMID: 29186456 DOI: 10.1093/infdis/jix605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Genital herpes is an important cofactor for acquisition of human immunodeficiency virus (HIV) infection, and effective prophylaxis is a helpful strategy to halt both HIV and herpes simplex virus (HSV) transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV type 2 (HSV-2) acquisition. Methods HSV type 1 (HSV-1) and HSV-2 mutants were selected for resistance to tenofovir and PMEO-DAPy (6-phosphonylmethoxyethoxy-2,4-diaminopyrimidine, an acyclic nucleoside phosphonate with dual anti-HSV and anti-HIV activity) by stepwise dose escalation. Several plaque-purified viruses were characterized phenotypically (drug resistance profiling) and genotypically (sequencing of the viral DNA polymerase gene). Results Tenofovir resistant and PMEO-DAPy-resistant viruses harbored specific amino acid substitutions associated with resistance not only to tenofovir and PMEO-DAPy but also to acyclovir and foscarnet. These amino acid changes (A719V, S724N, and L802F [HSV-1] and M789T and A724V [HSV-2]) were also found in clinical isolates recovered from patients refractory to acyclovir and/or foscarnet therapy or in laboratory-derived strains. A total of 10 (HSV-1) and 18 (HSV-2) well-characterized DNA polymerase mutants had decreased susceptibility to tenofovir and PMEO-DAPy. Conclusions Tenofovir and PMEO-DAPy target the HSV DNA polymerase, and clinical isolates with DNA polymerase mutations emerging under acyclovir and/or foscarnet therapy showed cross-resistance to tenofovir and PMEO-DAPy.
Collapse
Affiliation(s)
- Graciela Andrei
- Laboratory of Virology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Sarah Gillemot
- Laboratory of Virology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Dimitrios Topalis
- Laboratory of Virology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
2
|
Ikawa Y, Fujiki T, Nishimura R, Noguchi K, Koshino E, Fujiki A, Fukuda M, Kuroda R, Mase S, Araki R, Maeba H, Shiraki K, Yachie A. Improvement of refractory acyclovir-resistant herpes simplex virus type 1 infection by continuous acyclovir administration. J Infect Chemother 2019; 25:65-67. [DOI: 10.1016/j.jiac.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
|
3
|
Afshar B, Bibby DF, Piorkowska R, Ohemeng-Kumi N, Snoeck R, Andrei G, Gillemot S, Morfin F, Frobert E, Burrel S, Boutolleau D, Crowley B, Mbisa JL. A European multi-centre External Quality Assessment (EQA) study on phenotypic and genotypic methods used for Herpes Simplex Virus (HSV) drug resistance testing. J Clin Virol 2017; 96:89-93. [DOI: 10.1016/j.jcv.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
4
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. J Antimicrob Chemother 2015; 71:6-16. [PMID: 26433780 DOI: 10.1093/jac/dkv285] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Kathrin Bohn-Wippert
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Marisa Kaspar
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Roland Zell
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Courcambeck J, Bouzidi M, Perbost R, Jouirou B, Amrani N, Cacoub P, Pèpe G, Sabatier JM, Halfon P. Resistance of Hepatitis C Virus to Ns3–4A Protease Inhibitors: Mechanisms of Drug Resistance Induced by R155Q, A156T, D168A and D168V Mutations. Antivir Ther 2006. [DOI: 10.1177/135965350601100702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background/aims One of the main issues in the development of antiviral therapy is the emergence of drug-resistant viruses. In the case of hepatitis C virus (HCV), selection of drug-resistant mutants was evidenced by in vitro studies on protease inhibitors (PIs); for example, BILN-2061, VX-950 and SCH-6. Four mutations in the HCV protease (R155Q, A156T, D168A and D168V) have been identified in vitro in the HCV replicon system that confer resistance to BILN-2061 (a reference inhibitor). However, the molecular mechanism of drug resistance is still unknown. The aim of this study is to unravel, using an molecular modelling strategy, the structural basis of such molecular mechanism of HCV resistance to PIs. We focused on protease mutations conferring HCV resistance to BILN-2061 and described for the first time such mechanism at a molecular level. Methods The structures of drug-resistant NS3 proteases were obtained by mutation of selected residues (R155Q, A156T, D168A and D168V) and the ternary complexes formed between NS3–4A and BILN-2061 were optimized using GenMol software ( www.3dgenoscience.com ; Genoscience, Marseille, France). Results Two mechanisms were evidenced for viral resistance to BILN-2061. A ‘direct’ resistance mechanism is based on contacts between the mutated R155Q and A156T protease residues and its inhibitor. In the ‘indirect’ resistance mechanism, the mutated D168A/V residue is not in close contact with the drug itself but interacts with other residues connected to the drug. Conclusions These data provide new insights in the understanding of the mechanisms of HCV drug escape, and may allow predicting potential cross-resistance phenomenon with other PIs. This approach can be used as a basis for future rational PI drug design candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrice Cacoub
- Department of Internal Medicine Hopital La Pitié-Salpêtrière, Paris, France
| | - Gérard Pèpe
- Laboratoire GCOM2, CNRS-UMR 6114, Faculté des Sciences de Luminy - Marseille, France
| | - Jean-Marc Sabatier
- Laboratoire de Biochimie - Ingénierie des protéines, IFR Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | |
Collapse
|
7
|
Stránská R, van Loon AM, Polman M, Beersma MFC, Bredius RGM, Lankester AC, Meijer E, Schuurman R. Genotypic and Phenotypic Characterization of Acyclovir-Resistant Herpes Simplex Viruses Isolated from Haematopoietic Stem Cell Transplant Recipients. Antivir Ther 2004. [DOI: 10.1177/135965350400900413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thirty-one herpes simplex virus type one (HSV-1) isolates from 12 haematopoietic stem cell transplant recipients with persistent HSV infections despite acyclovir (ACV) prophylaxis or treatment, were genotypically and phenotypically characterized. The relationship between drug susceptibility of the isolates and mutations in thymidine kinase (TK) and DNA polymerase (DNA pol) genes was examined. In all 12 patients, HSV infections were due to ACV-resistant, foscarnet-sensitive viruses. Out of 31 isolates examined, 23 were resistant and eight were sensitive to ACV; eight patients carried viruses with frameshift mutations in the TK gene (due to addition or deletion of single nucleotides in homopolymeric repeats). These mutations were found at codon 61 (G deletion, one patient), 146 (G insertion, five patients) and 153 or 185 (C deletion, one patient each). In four patients, viruses were selected during ACV therapy that contained novel amino acid substitutions in the TK gene (H58R, G129D, A189V, R216H, R220C). Their possible role in ACV resistance was further confirmed phenotypically and by the absence of any resistance-associated mutations in the DNA pol gene. These substitutions were located in ATP- or nucleoside-binding sites or in conserved regions of the TK gene. In addition, a single mutation, Q570R, in the δ-region C of the DNA pol gene, was identified in an isolate from a single patient with resistance to ACV. Our study confirms and expands previous data on genotypic changes associated with ACV resistance of HSV-1 clinical isolates.
Collapse
Affiliation(s)
- Růžena Stránská
- Department of Virology, University Medical Centre Utrecht, The Netherlands
| | - Anton M van Loon
- Department of Virology, University Medical Centre Utrecht, The Netherlands
| | - Merjo Polman
- Department of Virology, University Medical Centre Utrecht, The Netherlands
| | - Matthias FC Beersma
- Department of Medical Microbiology, Leiden University Medical Centre, The Netherlands
| | - Robbert GM Bredius
- Department of Paediatrics, Leiden University Medical Centre, The Netherlands
| | - Arjan C Lankester
- Department of Paediatrics, Leiden University Medical Centre, The Netherlands
| | - Ellen Meijer
- Department of Haematology, University Medical Centre Utrecht, The Netherlands
| | - Rob Schuurman
- Department of Virology, University Medical Centre Utrecht, The Netherlands
| |
Collapse
|