1
|
Pirkl M, Büch J, Devaux C, Böhm M, Sönnerborg A, Incardona F, Abecasis A, Vandamme AM, Zazzi M, Kaiser R, Lengauer T, The EuResist Network Study Group. Analysis of mutational history of multidrug-resistant genotypes with a mutagenetic tree model. J Med Virol 2023; 95:e28389. [PMID: 36484375 DOI: 10.1002/jmv.28389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) can develop resistance to all antiretroviral drugs. Multidrug resistance, however, is a rare event in modern HIV treatment, but can be life-threatening, particular in patients with very long therapy histories and in areas with limited access to novel drugs. To understand the evolution of multidrug resistance, we analyzed the EuResist database to uncover the accumulation of mutations over time. We hypothesize that the accumulation of resistance mutations is not acquired simultaneously and randomly across viral genotypes but rather tends to follow a predetermined order. The knowledge of this order might help to elucidate potential mechanisms of multidrug resistance. Our evolutionary model shows an almost monotonic increase of resistance with each acquired mutation, including less well-known nucleoside reverse transcriptase (RT) inhibitor-related mutations like K223Q, L228H, and Q242H. Mutations within the integrase (IN) (T97A, E138A/K G140S, Q148H, N155H) indicate high probability of multidrug resistance. Hence, these IN mutations also tend to be observed together with mutations in the protease (PR) and RT. We followed up with an analysis of the mutation-specific error rates of our model given the data. We identified several mutations with unusual rates (PR: M41L, L33F, IN: G140S). This could imply the existence of previously unknown virus variants in the viral quasispecies. In conclusion, our bioinformatics model supports the analysis and understanding of multidrug resistance.
Collapse
Affiliation(s)
- Martin Pirkl
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim Büch
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carole Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Michael Böhm
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Solna, Sweden
| | | | - Ana Abecasis
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Anne-Mieke Vandamme
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Microbiology, Immunology and Transplantation, Clinical and Epidemiological Virology, Institute for the Future, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rolf Kaiser
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
2
|
Schneider A, Corona A, Spöring I, Jordan M, Buchholz B, Maccioni E, Di Santo R, Bodem J, Tramontano E, Wöhrl BM. Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors. Nucleic Acids Res 2016; 44:2310-22. [PMID: 26850643 PMCID: PMC4797301 DOI: 10.1093/nar/gkw060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/24/2016] [Indexed: 11/27/2022] Open
Abstract
We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs.
Collapse
Affiliation(s)
- Anna Schneider
- Universität Bayreuth, Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Imke Spöring
- Julius-Maximilians-Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Mareike Jordan
- Universität Bayreuth, Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Bernd Buchholz
- Universität Heidelberg, Medizinische Fakultät Mannheim, Klinik für Kinder- und Jugendmedizin, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Rome, I-00185, Italy
| | - Jochen Bodem
- Julius-Maximilians-Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Birgitta M Wöhrl
- Universität Bayreuth, Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|