1
|
Juhlin CC. The road ahead: a brief guide to navigating the 2022 WHO classification of endocrine and neuroendocrine tumours. J Clin Pathol 2024:jcp-2023-209060. [PMID: 38981664 DOI: 10.1136/jcp-2023-209060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
The most recent WHO classification of endocrine and neuroendocrine tumours has brought about significant changes in the diagnosis and grading of these lesions. For instance, pathologists now have the ability to stratify subsets of thyroid and adrenal neoplasms using various histological features and composite risk assessment models. Moreover, novel recommendations on how to approach endocrine neoplasia involve additional immunohistochemical analyses, and the recognition and implementation of these key markers is essential for modernising diagnostic capabilities. Additionally, an improved understanding of tumour origin has led to the renaming of several entities, resulting in the emergence of terminology not yet universally recognised. The adjustments in nomenclature and prognostication may pose a challenge for the clinical team, and care providers might be eager to engage in a dialogue with the diagnosing pathologist, as treatment guidelines have not fully caught up with these recent changes. Therefore, it is crucial for a surgical pathologist to be aware of the knowledge behind the implementation of changes in the WHO classification scheme. This review article will delve into the most significant diagnostic and prognostic changes related to lesions in the parathyroid, thyroid, adrenal glands and the gastroenteropancreatic neuroendocrine system. Additionally, the author will briefly share his personal reflections on the clinical implementation, drawing from a couple of years of experience with these new algorithms.
Collapse
Affiliation(s)
- Carl Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Tetti M, Brüdgam D, Jacopo Burrello, Udager AM, Riester A, Knösel T, Beuschlein F, Rainey WE, Reincke M, Williams TA. Unilateral Primary Aldosteronism: Long-Term Disease Recurrence After Adrenalectomy. Hypertension 2024; 81:936-945. [PMID: 38318706 PMCID: PMC10954406 DOI: 10.1161/hypertensionaha.123.22281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Primary aldosteronism (PA) is frequently caused by a unilateral aldosterone-producing adenoma with a PA-driver mutation. Unilateral adrenalectomy has a high probability of short-term biochemical remission, but long-term postsurgical outcomes are relatively undefined. Our objective was to investigate the incidence of long-term recurrence of PA in individuals with postsurgical short-term biochemical remission. METHODS Adrenalectomized patients for unilateral PA were included from a single referral center. Histopathology and outcomes were assessed according to international histopathology of unilateral primary aldosteronism and PASO (Primary Aldosteronism Surgical Outcome) consensuses. Genotyping was performed using CYP11B2 (aldosterone synthase)-guided sequencing. RESULTS Classical adrenal histopathology, exemplified by a solitary aldosterone-producing adenoma, was observed in 78% of 90 adrenals, compared with 22% with nonclassical histopathology. The classical group displayed higher aldosterone-to-renin ratios (P=0.013) and lower contralateral ratios (P=0.008). Outcome assessments at both short (12 months [7; 12]) and long (89 months [48; 124]) terms were available for 57 patients. At short-term assessment, 53 (93%) displayed complete biochemical success (43 classical and 10 nonclassical), but long-term assessment demonstrated biochemical PA recurrence in 12 (23%) with an overrepresentation of the nonclassical histopathology (6 [60%] of 10 nonclassical histopathology versus 6 [14%] of 43 classical histopathology; P=0.005). PA-driver mutations were identified in 97% of 64 aldosterone-producing adenomas; there was no association of the aldosterone-producing adenoma genotype with PA recurrence. CONCLUSIONS A substantial proportion of individuals display postsurgical biochemical recurrence of PA, which is related to the histopathology of the resected adrenal gland. These findings emphasize the role of histopathology and the requirement for continued outcome assessment in the management of surgically treated patients for PA.
Collapse
Affiliation(s)
- Martina Tetti
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
| | - Denise Brüdgam
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich (USZ) and Universität Zürich (UZH), Zürich, Switzerland
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV,
LMU Klinikum, LMU München, Munich, Germany
| |
Collapse
|
3
|
Gunnarsdottir H, Agnarsson BA, Jonasdottir S, Gudmundsson J, Birgisson G, Sigurjonsdottir HA. Immunohistochemical staining seems mandatory for individualizing and shortening follow-up in unilateral primary aldosteronism. Clin Endocrinol (Oxf) 2023; 99:441-448. [PMID: 37525427 DOI: 10.1111/cen.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE The clinical significance of immunohistochemistry (IHC) for unilateral primary aldosteronism (PA) has been unclear. Individualized follow-up of PA patients could be in sight. Long-term outcomes of patients, classified based on IHC, need further investigation. We aimed to assess long-term clinical outcomes for unilateral PA, classifying patients based on IHC. DESIGN A nationwide observational study, with up to 16 years follow-up, executed in 2007-2016 at Landspitali University Hospital, tertiary referral center. Patients were diagnosed and treated in line with the current guidelines. Haematoxylin and eosin (H&E) tissue slides were stained using CYP11B1 and -B2 antibodies. All cases were re-evaluated and classified according to the HISTALDO consensus. Outcomes were assessed using the PASO criteria. PATIENTS All unilateral PA patients diagnosed in 2007-2016 in Iceland, 26 patients aged 28-73 years, who underwent adrenalectomy, were included. MEASUREMENTS Aldosterone, renin, and cortisol values, use and dosage of antihypertensives, potassium supplementation, blood pressure and serum potassium pre-intervention and throughout follow-up, and histopathology results post-adrenalectomy. RESULTS Following IHC, an aldosterone-producing nodule was seen in 12 adrenals, an aldosterone-producing adenoma in 10 and multiple aldosterone-producing micronodules in four. IHC altered histopathology from previous H&E diagnosis in 23% (6/26) of the patients. In total, 81% (21/26) of the patients had partial clinical success. Eight percent (2/26) of the patients needed potassium supplementation during follow-up. In the classical group, the AVS results were more determinative with significantly higher lateralization index (median 10.1 vs. 5.3, p = .04) and more contralateral suppression (median nondominant ratio 0.4 vs. 1.0, p = .03). One out of five patients with complete clinical success at 12 months post-op had severe relapse later, the other four were normotensive without antihypertensives for up to 10 years. CONCLUSIONS We found IHC mandatory for accurate histopathologic diagnosis of PA. Our results support the importance of contralateral suppression when interpreting AVS results. Also, the study highlights the complicated assessment of clinical outcome and importance of aldosterone and renin measurements during follow-up.
Collapse
Affiliation(s)
- Hrafnhildur Gunnarsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Bjarni A Agnarsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Sigurros Jonasdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon Gudmundsson
- Department of Radiology, Landspitali University Hospital, Reykjavik, Iceland
| | - Gudjon Birgisson
- Department of Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Helga A Sigurjonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
4
|
Younes N, Larose S, Bourdeau I, Therasse E, Lacroix A. Role of Adrenal Vein Sampling in Guiding Surgical Decision in Primary Aldosteronism. Exp Clin Endocrinol Diabetes 2023; 131:418-434. [PMID: 37567230 DOI: 10.1055/a-2106-4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Adrenal vein sampling (AVS) is recommended for subtyping primary aldosteronism (PA) to identify lateralized or bilateral sources of aldosterone excess, allowing for better decision-making in regard to medical or surgical management on a case-by-case basis. To date, no consensus exists on protocols to be used during AVS, especially concerning sampling techniques, the timing of sampling, and whether or not to use adrenocorticotropic hormone (ACTH) stimulation. Interpretation criteria for selectivity, lateralization, and contralateral suppression vary from one expert center to another, with some favoring strict cut-offs to others being more permissive. Clinical and biochemical post-operative outcomes can also be influenced by AVS criteria utilized to indicate surgical therapy.In this review, we reanalyze studies on AVS highlighting the recent pathological findings of frequent micronodular hyperplasia adjacent to a dominant aldosteronoma (APA) overlapping with bilateral idiopathic hyperaldosteronism (IHA) etiologies, as opposed to the less frequent unilateral single aldosteronoma. The variable expression of melanocortin type 2 receptors in the nodules and hyperplasia may explain the frequent discordance in lateralization ratios between unstimulated and ACTH- stimulated samples. We conclude that aldosterone values collected during simultaneous bilateral sampling, both at baseline and post-ACTH stimulation, are required to adequately evaluate selectivity, lateralization, and contralateral suppression during AVS, to better identify all patients with PA that can benefit from a surgical indication. Recommended cut-offs for each ratio are also presented.
Collapse
Affiliation(s)
- Nada Younes
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Stéphanie Larose
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Eric Therasse
- Department of Radiology, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Québec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
5
|
Parisien-La Salle S, Corbeil G, El-Haffaf Z, Duranceau C, Latour M, Karakiewicz PI, Lacroix A, Bourdeau I. Genetic Dissection of Primary Aldosteronism in a Patient With MEN1 and Ipsilateral Adrenocortical Carcinoma and Adenoma. J Clin Endocrinol Metab 2022; 108:26-32. [PMID: 36179244 DOI: 10.1210/clinem/dgac564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adrenal tumors are found in up to 40% of patients with multiple endocrine neoplasia type 1 (MEN1). However, adrenocortical carcinomas (ACC) and primary aldosteronism (PA) are rare in MEN1. CASE A 48-year-old woman known to have primary hyperparathyroidism and hypertension with hypokalemia was referred for a right complex 8-cm adrenal mass with a 38.1 SUVmax uptake on 18F-FDG PET/CT. PA was confirmed by saline suppression test (aldosterone 1948 pmol/L-1675 pmol/L; normal range [N]: <165 post saline infusion) and suppressed renin levels (<5 ng/L; N: 5-20). Catecholamines, androgens, 24-hour urinary cortisol, and pituitary panel were normal. A right open adrenalectomy revealed a concomitant 4-cm oncocytic ACC and a 2.3-cm adrenocortical adenoma. Immunohistochemistry showed high expression of aldosterone synthase protein in the adenoma but not in the ACC, supporting excess aldosterone production by the adenoma. GENETIC ANALYSIS After genetic counseling, the patient underwent genetic analysis of leucocyte and tumoral DNA. Sequencing of MEN1 revealed a heterozygous germline pathogenic variant in MEN1 (c.1556delC, p.Pro519Leufs*40). The wild-type MEN1 allele was lost in the tumoral DNA of both the resected adenoma and carcinoma. Sequencing analysis of driver genes in PA revealed a somatic pathogenic variant in exon 2 of the KCNJ5 gene (c.451G>A, p.Gly151Arg) only in the aldosteronoma. CONCLUSION To our knowledge, we describe the first case of adrenal collision tumors in a patient carrying a germline pathogenic variant of the MEN1 gene associated with MEN1 loss of heterozygosity in both oncocytic ACC and adenoma and a somatic KCNJ5 pathogenic variant leading to aldosterone-producing adenoma. This case gives new insights on adrenal tumorigenesis in MEN1 patients.
Collapse
Affiliation(s)
- Stéfanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Gilles Corbeil
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Zaki El-Haffaf
- Division of Genetics, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Caroline Duranceau
- Division of Endocrinology, Department of Medicine, Chicoutimi Hospital, Université du Québec à Chicoutimi, Chicoutimi, QC, H2X 0C1, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Pierre I Karakiewicz
- Division of Urology, Department of Surgery, Centre Hospitalier de l'Université de Montréal, Montréal, QC, H2X 0C1, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
6
|
Mete O, Erickson LA, Juhlin CC, de Krijger RR, Sasano H, Volante M, Papotti MG. Overview of the 2022 WHO Classification of Adrenal Cortical Tumors. Endocr Pathol 2022; 33:155-196. [PMID: 35288842 PMCID: PMC8920443 DOI: 10.1007/s12022-022-09710-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
The new WHO classification of adrenal cortical proliferations reflects translational advances in the fields of endocrine pathology, oncology and molecular biology. By adopting a question-answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the adrenal cortex pathologies that are now reflected in the 2022 WHO classification. The pathological correlates of adrenal cortical proliferations include diffuse adrenal cortical hyperplasia, adrenal cortical nodular disease, adrenal cortical adenomas and adrenal cortical carcinomas. Understanding germline susceptibility and the clonal-neoplastic nature of individual adrenal cortical nodules in primary bilateral macronodular adrenal cortical disease, and recognition of the clonal-neoplastic nature of incidentally discovered non-functional subcentimeter benign adrenal cortical nodules has led to redefining the spectrum of adrenal cortical nodular disease. As a consequence, the most significant nomenclature change in the field of adrenal cortical pathology involves the refined classification of adrenal cortical nodular disease which now includes (a) sporadic nodular adrenocortical disease, (b) bilateral micronodular adrenal cortical disease, and (c) bilateral macronodular adrenal cortical disease (formerly known primary bilateral macronodular adrenal cortical hyperplasia). This group of clinicopathological entities are reflected in functional adrenal cortical pathologies. Aldosterone producing cortical lesions can be unifocal or multifocal, and may be bilateral with no imaging-detected nodule(s). Furthermore, not all grossly or radiologically identified adrenal cortical lesions may be the source of aldosterone excess. For this reason, the new WHO classification endorses the nomenclature of the HISTALDO classification which uses CYP11B2 immunohistochemistry to identify functional sites of aldosterone production to help predict the risk of bilateral disease in primary aldosteronism. Adrenal cortical carcinomas are subtyped based on their morphological features to include conventional, oncocytic, myxoid, and sarcomatoid subtypes. Although the classic histopathologic criteria for diagnosing adrenal cortical carcinomas have not changed, the 2022 WHO classification underscores the diagnostic and prognostic impact of angioinvasion (vascular invasion) in these tumors. Microscopic angioinvasion is defined as tumor cells invading through a vessel wall and forming a thrombus/fibrin-tumor complex or intravascular tumor cells admixed with platelet thrombus/fibrin. In addition to well-established Weiss and modified Weiss scoring systems, the new WHO classification also expands on the use of other multiparameter diagnostic algorithms (reticulin algorithm, Lin-Weiss-Bisceglia system, and Helsinki scoring system) to assist the workup of adrenal cortical neoplasms in adults. Accordingly, conventional carcinomas can be assessed using all multiparameter diagnostic schemes, whereas oncocytic neoplasms can be assessed using the Lin-Weiss-Bisceglia system, reticulin algorithm and Helsinki scoring system. Pediatric adrenal cortical neoplasms are assessed using the Wieneke system. Most adult adrenal cortical carcinomas show > 5 mitoses per 10 mm2 and > 5% Ki67. The 2022 WHO classification places an emphasis on an accurate assessment of tumor proliferation rate using both the mitotic count (mitoses per 10 mm2) and Ki67 labeling index which play an essential role in the dynamic risk stratification of affected patients. Low grade carcinomas have mitotic rate of ≤ 20 mitoses per 10 mm2, whereas high-grade carcinomas show > 20 mitoses per 10 mm2. Ki67-based tumor grading has not been endorsed in the new WHO classification, since the proliferation indices are continuous variables rather than being static thresholds in tumor biology. This new WHO classification emphasizes the role of diagnostic and predictive biomarkers in the workup of adrenal cortical neoplasms. Confirmation of the adrenal cortical origin of a tumor remains a critical requirement when dealing with non-functional lesions in the adrenal gland which may be mistaken for a primary adrenal cortical neoplasm. While SF1 is the most reliable biomarker in the confirmation of adrenal cortical origin, paranuclear IGF2 expression is a useful biomarker in the distinction of malignancy in adrenal cortical neoplasms. In addition to adrenal myelolipoma, the new classification of adrenal cortical tumors has introduced new sections including adrenal ectopia, based on the potential role of such ectopic tissue as a possible source of neoplastic proliferations as well as a potential mimicker of metastatic disease. Adrenal cysts are also discussed in the new classification as they may simulate primary cystic adrenal neoplasms or even adrenal cortical carcinomas in the setting of an adrenal pseudocyst.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, and Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marco Volante
- Department of Pathology, University of Turin, Turin, Italy
| | | |
Collapse
|
7
|
Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol Metab 2022; 33:36-49. [PMID: 34743804 DOI: 10.1016/j.tem.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
Primary aldosteronism (PA) can be sporadic or familial and classified into unilateral and bilateral forms. Sporadic PA predominates with excessive aldosterone production usually arising from a unilateral aldosterone-producing adenoma (APA) or bilateral adrenocortical hyperplasia. Familial PA is rare and caused by germline variants, that partly correspond to somatic alterations in APAs. Classification into unilateral and bilateral PA determines the treatment approach but does not accurately mirror disease pathology. Some evidence indicates a disease continuum ranging from balanced aldosterone production from each adrenal to extreme asymmetrical bilateral aldosterone production. Nonetheless, surgical removal of the overactive adrenal in unilateral PA achieves highly successful outcomes and almost all patients are biochemically cured of their aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| |
Collapse
|
8
|
Reincke M, Bancos I, Mulatero P, Scholl UI, Stowasser M, Williams TA. Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol 2021; 9:876-892. [PMID: 34798068 DOI: 10.1016/s2213-8587(21)00210-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Primary aldosteronism is a common cause of secondary hypertension associated with excess cardiovascular morbidities. Primary aldosteronism is underdiagnosed because it does not have a specific, easily identifiable feature and clinicians can be poorly aware of the disease. The diagnostic investigation is a multistep process of screening, confirmatory testing, and subtype differentiation of unilateral from bilateral forms for therapeutic management. Adrenal venous sampling is key for reliable subtype identification, but can be bypassed in patients with specific characteristics. For unilateral disease, surgery offers the possibility of cure, with total laparoscopic unilateral adrenalectomy being the treatment of choice. Bilateral forms are treated mainly with mineralocorticoid receptor antagonists. The goals of treatment are to normalise both blood pressure and excessive aldosterone production, and the primary aims are to reduce associated comorbidities, improve quality of life, and reduce mortality. Prompt diagnosis of primary aldosteronism and the use of targeted treatment strategies mitigate aldosterone-specific target organ damage and with appropriate patient management outcomes can be excellent. Advances in molecular histopathology challenge the traditional concept of primary aldosteronism as a binary disease, caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations drive autonomous aldosterone production in most adenomas. Many of these same mutations have been identified in nodular lesions adjacent to an aldosterone-producing adenoma and in patients with bilateral disease. In addition, germline mutations cause rare familial forms of aldosteronism (familial hyperaldosteronism types 1-4). Genetic testing for inherited forms in suspected cases of familial hyperaldosteronism avoids the burdensome diagnostic investigation in positive patients. In this Review, we discuss advances and future management approaches in the diagnosis of primary aldosteronism.
Collapse
Affiliation(s)
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ute I Scholl
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Meyer LS, Handgriff L, Lim JS, Udager AM, Kinker IS, Ladurner R, Wildgruber M, Knösel T, Bidlingmaier M, Rainey WE, Reincke M, Williams TA. Single-Center Prospective Cohort Study on the Histopathology, Genotype, and Postsurgical Outcomes of Patients With Primary Aldosteronism. Hypertension 2021; 78:738-746. [PMID: 34024122 DOI: 10.1161/hypertensionaha.121.17348] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lucie S Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Laura Handgriff
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Aaron M Udager
- Department of Pathology (A.M.U.), University of Michigan Medical School, Ann Arbor, MI.,Michigan Center for Translational Pathology, Ann Arbor (A.M.U.).,Rogel Cancer Center, University of Michigan, Ann Arbor (A.M.U.)
| | - Isabella-Sabrina Kinker
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Roland Ladurner
- Klinik für Viszeral- und Endokrine Chirurgie, Klinikum der Universität München, Germany (R.L.)
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Germany (M.W.)
| | - Thomas Knösel
- Institute of Pathology (T.K.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - William E Rainey
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany.,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W.)
| |
Collapse
|
10
|
Juhlin CC, Bertherat J, Giordano TJ, Hammer GD, Sasano H, Mete O. What Did We Learn from the Molecular Biology of Adrenal Cortical Neoplasia? From Histopathology to Translational Genomics. Endocr Pathol 2021; 32:102-133. [PMID: 33534120 DOI: 10.1007/s12022-021-09667-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Approximately one-tenth of the general population exhibit adrenal cortical nodules, and the incidence has increased. Afflicted patients display a multifaceted symptomatology-sometimes with rather spectacular features. Given the general infrequency as well as the specific clinical, histological, and molecular considerations characterizing these lesions, adrenal cortical tumors should be investigated by endocrine pathologists in high-volume tertiary centers. Even so, to distinguish specific forms of benign adrenal cortical lesions as well as to pinpoint malignant cases with the highest risk of poor outcome is often challenging using conventional histology alone, and molecular genetics and translational biomarkers are therefore gaining increased attention as a possible discriminator in this context. In general, our understanding of adrenal cortical tumorigenesis has increased tremendously the last decade, not least due to the development of next-generation sequencing techniques. Comprehensive analyses have helped establish the link between benign aldosterone-producing adrenal cortical proliferations and ion channel mutations, as well as mutations in the protein kinase A (PKA) signaling pathway coupled to cortisol-producing adrenal cortical lesions. Moreover, molecular classifications of adrenal cortical tumors have facilitated the distinction of benign from malignant forms, as well as the prognostication of the individual patients with verified adrenal cortical carcinoma, enabling high-resolution diagnostics that is not entirely possible by histology alone. Therefore, combinations of histology, immunohistochemistry, and next-generation multi-omic analyses are all needed in an integrated fashion to properly distinguish malignancy in some cases. Despite significant progress made in the field, current clinical and pathological challenges include the preoperative distinction of non-metastatic low-grade adrenal cortical carcinoma confined to the adrenal gland, adoption of individualized therapeutic algorithms aligned with molecular and histopathologic risk stratification tools, and histological confirmation of functional adrenal cortical disease in the context of multifocal adrenal cortical proliferations. We herein review the histological, genetic, and epigenetic landscapes of benign and malignant adrenal cortical neoplasia from a modern surgical endocrine pathology perspective and highlight key mechanisms of value for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jérôme Bertherat
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, 75014, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 75014, Paris, France
| | - Thomas J Giordano
- Department of Pathology and Internal Medicine, University of Michigan, MI, Ann Arbor, USA
| | - Gary D Hammer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Stenman A, Shabo I, Ramström A, Zedenius J, Juhlin CC. Synchronous aldosterone- and cortisol-producing adrenocortical adenomas diagnosed using CYP11B immunohistochemistry. SAGE Open Med Case Rep 2019; 7:2050313X19883770. [PMID: 31666955 PMCID: PMC6801880 DOI: 10.1177/2050313x19883770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/26/2019] [Indexed: 11/15/2022] Open
Abstract
Immunohistochemistry with antibodies targeting enzymes responsible for the final conversion steps of cortisol (CYP11B1) and aldosterone (CYP11B2) is gaining ground as an adjunct tool in the postoperative evaluation of adrenocortical nodules. The method allows the pathologist to visualize hormone production for each lesion, thereby permitting a more exact assessment regarding the distinction between adrenocortical adenomas and adrenocortical hyperplasia, with implications for patient follow-up. We describe how immunohistochemistry facilitated the histopathological diagnosis of twin adenoma (one cortisol- and one aldosterone-producing) from suspected hyperplasia in a patient with hypertension, mild autonomous cortisol secretion and concurrent adrenocorticotropic hormone-producing adrenomedullary hyperplasia. As the nodules were similar in size and displayed rather analogous histology, CYP11B1 and B2 immunohistochemistry was needed to exclude adrenocortical hyperplasia, allowing us to discharge the patient from further surveillance. We conclude that the application of functional immunohistochemistry has direct clinical consequences and advocates the prompt introduction of these markers in clinical routine.
Collapse
Affiliation(s)
- Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Ivan Shabo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Annica Ramström
- Department of Internal Medicine, Capio St. Görans Hospital, Stockholm, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Meyer LS, Reincke M, Williams TA. Timeline of Advances in Genetics of Primary Aldosteronism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:213-243. [PMID: 31588534 DOI: 10.1007/978-3-030-25905-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overwhelming majority of cases of primary aldosteronism (PA) occur sporadically due to a unilateral aldosterone-producing adenoma (APA) or bilateral idiopathic adrenal hyperplasia. Familial forms of PA are rare with four subtypes defined to date (familial hyperaldosteronism types I-IV). The molecular basis of familial hyperaldosteronism type I (FH type I or glucocorticoid-remediable aldosteronism) was established in 1992; two decades later the genetic variant causing FH type III was identified and germline mutations causing FH type IV and FH type II were determined soon after. Effective diagnostic protocols and methods to detect the overactive gland in unilateral PA by adrenal venous sampling followed by laparoscopic adrenalectomy have made available APAs for scientific studies. In rapid succession, following the widespread use of next-generation sequencing, recurrent somatic driver mutations in APAs were identified in genes encoding ion channels and transporters. The development of highly specific monoclonal antibodies against key enzymes in adrenal steroidogenesis has unveiled the heterogeneous features of the diseased adrenal in PA and helped reveal the high proportion of APAs with driver mutations. We discuss what is known about the genetics of PA that has led to a clearer understanding of the disease pathophysiology.
Collapse
Affiliation(s)
- Lucie S Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|