1
|
Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication. Sci Rep 2019; 9:6270. [PMID: 31000742 PMCID: PMC6472340 DOI: 10.1038/s41598-019-42746-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Mesangial cells stimulated with high glucose (HG) exhibit increased intracellular angiotensin II (AngII) synthesis that is correlated with the upregulation of AngII target genes, such as profibrotic cytokines. The intracrine effects of AngII can be mediated by several molecules transferred to other cells via exosomes (Exos), which play a key role in cellular communication under many physiological and pathological conditions. The aim of this study was to investigate the effects of exosomes derived from HG-stimulated human mesangial cells (HG-HMCs) on normal unstimulated HMCs. Exosomes from HMCs (C-Exos) and HG-HMCs (HG-Exos) were obtained from cell culture supernatants. HMCs were incubated with C-Exos or HG-Exos. HG stimulus induced a change in the amount but not the size of Exos. Both C-Exos and HG-Exos contained angiotensinogen and renin, but no angiotensin converting enzyme was detected. Compared with HMCs treated with C-Exos, HMCs treated with HG-Exos presented higher levels of fibronectin, angiotensinogen, renin, AT1 and AT2 receptors, indicating that HG-Exos modified the function of normal HMCs. These results suggest that the intercellular communication through Exos may have pathophysiological implications in the diabetic kidney.
Collapse
|
2
|
Komaki H, Iwasa M, Hayakawa Y, Okamoto C, Minatoguchi S, Yamada Y, Kanamori H, Kawasaki M, Nishigaki K, Minatoguchi S. Azilsartan attenuates cardiac damage caused by high salt intake through the downregulation of the cardiac (pro)renin receptor and its downstream signals in spontaneously hypertensive rats. Hypertens Res 2018; 41:886-896. [PMID: 30209283 DOI: 10.1038/s41440-018-0099-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/13/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022]
Abstract
We examined whether the stimulation of the angiotensin II AT1 receptor increases the expression of the cardiac (pro)renin receptor ((P)RR) and its downstream signals and whether the blockade of the angiotensin II AT1 receptor by azilsartan decreases the expression of the cardiac (P)RR and its signaling in spontaneously hypertensive rats (SHRs) with a high-salt intake. Rats received normal-salt (0.9%) chow, high-salt (8.9%) chow, normal-salt chow with 1 mg/day of azilsartan, and high-salt chow with 1 mg/day of azilsartan from 6 to 12 weeks of age. Rats with normal-salt chow were administered 100 ng/kg/min of angiotensin II by osmotic minipump from 6 to 12 weeks of age. A high-salt diet and angiotensin II significantly increased the systolic blood pressure; overexpressed cardiac (P)RR, phosphorylated (p)-ERK1/2, p-p38MAPK, p-HSP27, and TGF-ß1; enhanced cardiac interstitial and perivascular fibrosis, cardiomyocyte size, interventricular septum (IVS) thickness, and left ventricular (LV) end-diastolic dimension; and decreased LV fractional shortening. Azilsartan decreased systolic blood pressure, cardiac expressions of (P)RR, p-ERK1/2, p-p38MAPK, p-HSP27, and TGF-ß1, cardiac interstitial and perivascular fibrosis, cardiomyocyte size, and LV diastolic dimension, and improved LV fractional shortening. In conclusion, azilsartan attenuates cardiac damage caused by high salt intake through the downregulation of the cardiac (pro)renin receptor and its downstream signals in SHRs.
Collapse
Affiliation(s)
- Hisaaki Komaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Masamitsu Iwasa
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Yuka Hayakawa
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Chihiro Okamoto
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Yoshihisa Yamada
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Kazuhiko Nishigaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan.
| |
Collapse
|
3
|
Zhang N, Ji Z. Effects of caveolin-1 and P-ERK1/2 on Ang II-induced glomerular mesangial cell proliferation. Ren Fail 2013; 35:971-7. [PMID: 23826745 DOI: 10.3109/0886022x.2013.808956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study explored the effects of caveolin-1, p-ERK1/2 and transient receptor potential channel 6 (TRPC6) on angiotensin II (Ang II)-induced glomerular mesangial cell (GMC) proliferation, and investigated the role of Ang II on GMC proliferation. GMC cultures were divided into Control, Ang II (Ang II 10(-7 )mol/L), PD98059 (Ang II 10(-7 )mol/L + PD98059 5 × 10(-5 )mol/L) and MβCD groups (Ang II 10(-7 )mol/L + MβCD 10(-2 )mol/L). GMCs proliferation was measured by the methyl thiazolil tetracolium and trypan blue assays. The distribution of caveolin-1, p-ERK1/2 and TRPC6 was monitored by immunocytochemistry. Real time polymerase chain reaction (PCR) was used to assess mRNA expression of caveolin-1 and TRPC6. Western blot analysis was used to assess protein expression of caveolin-1, p-ERK1/2 and TRPC6. The results showed that Ang II promoted GMC proliferation. PD98059 and MβCD blocked Ang II-induced GMC proliferation, by 31.06% and 48.96%, respectively. In comparison with the control group, the expression of p-ERK1/2 and TRPC6 was significantly higher and caveolin-1 expression was significantly lower in the Ang II group. PD98059 markedly decreased p-ERK1/2 and TRPC6 expression and increased caveolin-1 expression. MβCD decreased the expression of p-ERK1/2 and TRPC6, but had no significant effect on caveolin-1 protein expression. These findings suggested that the intact caveolae structure was associated with Ang II-induced GMC proliferation, ERK1/2 activation and TRPC6 expression. And p-ERK1/2 acted as an upstream signal molecule for TRPC6. Moreover, p-ERK1/2 and caveolin-1 appeared to be inhibited reciprocally, thus regulated GMC proliferation by regulating TRPC6 expression.
Collapse
Affiliation(s)
- Na Zhang
- Department of Pediatrics, Second Affiliated Hospital of Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, China
| | | |
Collapse
|
4
|
Shah VN, Cheema BS, Sharma R, Khullar M, Kohli HS, Ahluwalia TS, Mohan V, Bhansali A. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem 2012; 372:191-8. [PMID: 23081748 DOI: 10.1007/s11010-012-1460-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022]
Abstract
Patients with type 2 diabetes (T2DM) are usually obese and concurrent obesity results into activation of the renin-angiotensin-system (RAS) which is a risk factor for diabetic nephropathy (DN). Gene-gene interaction between acetyl-coenzymeA carboxylase beta (ACACβ) gene, which is involved in fatty acid metabolism and angiotensin II receptors (AGTR1) gene, which mediates RAS proteins actions on renal tissue, polymorphism with DN have not been studied earlier. The present study was designed with the aim to examine the association of an ACACβ (rs2268388) and AGTR1 (rs5186) gene polymorphism with the risk of DN in Asian Indians. 1,158 patients with T2DM belonging to two independently ascertained North Indian and one South Indian cohorts were genotyped for ACACβ (rs2268388) and AGTR1 (rs5186) polymorphism using real time PCR-based Taq-man assay and PCR-RFLP assays. In all the three cohorts, a significantly higher frequency of T allele and TT genotypes of ACACβ and C allele and CC genotypes of AGTR1 were found in patients with DN as compared to patients without nephropathy. Further, T allele of ACACβ and C allele of AGTR1 were found to be significantly associated with proteinuria, a hallmark of DN. We also found significant epistatic interactions between these two genes. TT genotypes of ACACβ gene and CC genotype of AGTR1 gene confers the risk of DN and both genes had significant epistatic interaction in Asian Indian patients with T2DM.
Collapse
Affiliation(s)
- Viral N Shah
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|