1
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. Effects of a high-salt diet on MAP and expression levels of renal ENaCs and aquaporins in SHR. Exp Biol Med (Maywood) 2023; 248:1768-1779. [PMID: 37828834 PMCID: PMC10792424 DOI: 10.1177/15353702231198085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/05/2023] [Indexed: 10/14/2023] Open
Abstract
An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
Collapse
Affiliation(s)
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sau-Kuen Lam
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Mary S, Small H, Herse F, Carrick E, Flynn A, Mullen W, Dechend R, Delles C. Preexisting hypertension and pregnancy-induced hypertension reveal molecular differences in placental proteome in rodents. Physiol Genomics 2021; 53:259-268. [PMID: 33969702 PMCID: PMC8616587 DOI: 10.1152/physiolgenomics.00160.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023] Open
Abstract
Preexisting or new onset of hypertension affects pregnancy and is one of the leading causes of maternal and fetal morbidity and mortality. In certain cases, it also leads to long-term maternal cardiovascular complications. The placenta is a key player in the pathogenesis of complicated hypertensive pregnancies, however the pathomechanisms leading to an abnormal placenta are poorly understood. In this study, we compared the placental proteome of two pregnant hypertensive models with their corresponding normotensive controls: a preexisting hypertension pregnancy model (stroke-prone spontaneously hypertensive rats; SHRSP) versus Wistar-Kyoto and the transgenic RAS activated gestational hypertension model (transgenic for human angiotensinogen Sprague-Dawley rats; SD-PE) versus Sprague-Dawley rats, respectively. Label-free proteomics using nano LC-MS/MS was performed for identification and quantification of proteins. Between the two models, we found widespread differences in the expression of placental proteins including those related to hypertension, inflammation, and trophoblast invasion, whereas pathways such as regulation of serine endopeptidase activity, tissue injury response, coagulation, and complement activation were enriched in both models. We present for the first time the placental proteome of SHRSP and SD-PE and provide insight into the molecular make-up of models of hypertensive pregnancy. Our study informs future research into specific preeclampsia and chronic hypertension pregnancy mechanisms and translation of rodent data to the clinic.
Collapse
Affiliation(s)
- Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Heather Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Florian Herse
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Arun Flynn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
3
|
Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (Lond) 2021; 135:943-961. [PMID: 33822013 DOI: 10.1042/cs20210094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.
Collapse
|
4
|
Kabel AM, Ashour AM, Omar MS, Estfanous RS. Effect of fish oil and telmisartan on dehydroepiandrosterone-induced polycystic ovarian syndrome in rats: The role of oxidative stress, transforming growth factor beta-1, and nuclear factor kappa B. Food Sci Nutr 2020; 8:5149-5159. [PMID: 32994975 PMCID: PMC7500795 DOI: 10.1002/fsn3.1819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Our aim was to explore the effect of telmisartan and/or fish oil on dehydroepiandrosterone (DHEA)-induced PCOS in rats. Sixty female rats were divided into six equal groups as follows: Control; DHEA-induced PCOS; DHEA + Telmisartan; DHEA + Fish oil; DHEA + Carboxymethyl cellulose; and DHEA + Telmisartan +Fish oil group. Plasma sex hormones, anthropometric measurements, and the glycemic indices were measured. Tissue oxidative stress parameters and the proinflammatory cytokines were assessed. The ovaries were subjected to histopathological and electron microscopic examination. Telmisartan and/or fish oil induced significant improvement of insulin resistance with amelioration of oxidative stress and inflammation compared to PCOS group. Also, telmisartan and/or fish oil restored the hormonal levels and the anthropometric measurements to the normal values. This was significant with telmisartan/fish oil combination compared to the use of each of these agents alone. In conclusion, this combination may represent a promising hope for amelioration of PCOS.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department Faculty of Medicine Tanta University Tanta Egypt
- Department of Clinical Pharmacy College of Pharmacy Taif University Taif Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology College of Pharmacy Umm Al Qura University Makkah Saudi Arabia
| | - Mohamed S Omar
- Chemistry Department Faculty of Science Benha University Benha Egypt
| | - Remon S Estfanous
- Anatomy and Embryology Department Faculty of Medicine Tanta University Tanta Egypt
| |
Collapse
|
5
|
Ferrario CM, VonCannon J, Ahmad S, Wright KN, Roberts DJ, Wang H, Yamashita T, Groban L, Cheng CP, Collawn JF, Dell'Italia LJ, Varagic J. Activation of the Human Angiotensin-(1-12)-Chymase Pathway in Rats With Human Angiotensinogen Gene Transcripts. Front Cardiovasc Med 2019; 6:163. [PMID: 31803758 PMCID: PMC6872498 DOI: 10.3389/fcvm.2019.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1-12) [Ang-(1-12)], an alternate substrate for tissue angiotensin II (Ang II) formation, underscores the importance of alternative renin-independent pathway(s) for the generation of angiotensins. Since renin enzymatic activity is species-specific, a transgenic model of hypertension due to insertion of the human angiotensinogen (AGT) gene in Sprague Dawley rats allowed for characterizing the contribution of a non-renin dependent mechanism for Ang II actions in their blood and heart tissue. With this in mind, we investigated whether TGR(hAGT)L1623 transgenic rats express the human sequence of Ang-(1-12) before and following a 2-week oral therapy with the type I Ang II receptor (AT1-R) antagonist valsartan. Plasma and cardiac expression of angiotensins, plasma renin activity, cardiac angiotensinogen, and chymase protein and the enzymatic activities of chymase, angiotensin converting enzyme (ACE) and ACE2 were determined in TGR(hAGT)L1623 rats given vehicle or valsartan. The antihypertensive effect of valsartan after 14-day treatment was associated with reduced left ventricular wall thickness and augmented plasma concentrations of angiotensin I (Ang I) and Ang II; rat and human concentrations of angiotensinogen or Ang-(1-12) did not change. On the other hand, AT1-R blockade produced a 55% rise in left ventricular content of human Ang-(1-12) concentration and no changes in rat cardiac Ang-(1-12) levels. Mass-Spectroscopy analysis of left ventricular Ang II content confirmed a >4-fold increase in cardiac Ang II content in transgenic rats given vehicle; a tendency for decreased cardiac Ang II content following valsartan treatment did not achieve statistical significance. Cardiac chymase and ACE2 activities, significantly higher than ACE activity in TGR(hAGT)L1623 rats, were not altered by blockade of AT1-R. We conclude that this humanized model of angiotensinogen-dependent hypertension expresses the human sequence of Ang-(1-12) in plasma and cardiac tissue and responds to blockade of AT1-R with further increases in the human form of cardiac Ang-(1-12). Since rat renin has no hydrolytic activity on human angiotensinogen, the study confirms and expands knowledge of the importance of renin-independent mechanisms as a source for Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Social Science and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hao Wang
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leanne Groban
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Che Ping Cheng
- Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Yuan X, Wang X, Li Y, Li X, Zhang S, Hao L. Aldosterone promotes renal interstitial fibrosis via the AIF‑1/AKT/mTOR signaling pathway. Mol Med Rep 2019; 20:4033-4044. [PMID: 31545432 PMCID: PMC6797939 DOI: 10.3892/mmr.2019.10680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/05/2019] [Indexed: 01/25/2023] Open
Abstract
A number of studies have shown that aldosterone serves an important role in promoting renal interstitial fibrosis, although the specific mechanism remains to be elucidated. A previous study revealed that the fibrotic effect of aldosterone was associated with the expression of allograft inflammatory factor 1 (AIF‑1) in RAW264.7 macrophage cells, in a time‑ and concentration‑dependent manner. However, the exact mechanism through which aldosterone promotes renal interstitial fibrosis remains unknown. In the present study, the effects of aldosterone on renal inflammatory cell infiltration, collagen deposition and the expression levels of AIF‑1, phosphatidylinositol 3‑kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), the oxidative stress factor NADPH oxidase 2 (NOX2) and nuclear transcription factor erythroid‑related factor 2 (Nrf2) were assessed in normal rats, rats treated with aldosterone, rats treated with aldosterone and spironolactone and those treated with spironolactone only (used as the control). The effect of aldosterone on these factors was also investigated in the renal interstitium of unilateral ureteral obstruction (UUO) rats. Additionally, the AIF‑1 gene was overexpressed and knocked down in macrophage RAW264.7 cells, and the effects of aldosterone on PI3K, AKT, mTOR, NOX2 and Nrf2 were subsequently investigated. The results showed that aldosterone promoted inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, PI3K, AKT, mTOR and NOX2, but inhibited the expression of Nrf2. In the UUO rats, aldosterone also promoted renal interstitial inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, NOX2, PI3K, AKT and mTOR, whereas the expression of Nrf2 was downregulated by aldosterone compared with that in the UUO‑only group; the influence of aldosterone was counteracted by spironolactone in the normal and UUO rats. In vitro, aldosterone upregulated the expression levels of AKT, mTOR, NOX2 and Nrf2 in RAW264.7 cells compared with those in untreated cells. Suppressing the expression of AIF‑1 inhibited the effects of aldosterone, whereas the overexpression of AIF‑1 enhanced these effects in RAW264.7 cells. These findings indicated that aldosterone promoted renal interstitial fibrosis by upregulating the expression of AIF‑1 and that the specific mechanism may involve AKT/mTOR and oxidative stress signaling.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yushu Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuyu Zhang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Melatonin therapy protects against renal injury before and after release of bilateral ureteral obstruction in rats. Life Sci 2019; 229:104-115. [PMID: 31100324 DOI: 10.1016/j.lfs.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
AIM Blockage of the urinary tract is often connected with renal function impediment, including reductions in glomerular filtration rate (GFR) and the power to control sodium as well as water elimination through urination. Melatonin, known to be the primary product of the pineal gland, prevents renal damage caused by ischemic reperfusion. However, the effects of melatonin on urinary obstruction, as well as release of obstruction induced kidney injury are still largely unknown. The aim of present study was to investigate the effect of melatonin on mediating protection against renal injury triggered from either bilateral ureteral obstruction (BUO) or BUO release (BUO-R). MAIN METHODS Adult male Sprague-Dawley rats (n = 60) were clustered into six treatment groups: sham treated-1; BUO-non-treated (24 h BUO only); BUO + melatonin; sham treated-2; BUO-48hR (24 h of BUO and then release for 2 days); and BUO-48hR + melatonin. Kidney tissues, blood and urine samples were obtained for further assessment. KEY FINDINGS It was found that melatonin treatment remarkably promoted the recovery of the handling capacity of urinary excretion of water as well as sodium in BUO and BUO-48hR models. Melatonin treatment partially inhibited inflammatory cytokine expression and the downregulation of aquaporin (AQPs, AQP-1, -2 and -3) expression in these two models. Moreover, the cytoarchitecture of BUO rats exposed to melatonin was well preserved. SIGNIFICANCE Melatonin treatment potently prevents BUO or BUO-R induced renal injury, which may be partially attributed to restoring the expression of AQPs and inhibition of inflammatory response, as well as preserving renal ultrastructural integrity.
Collapse
|
8
|
Aquaporin 11-Dependent Inhibition of Proliferation by Deuterium Oxide in Activated Hepatic Stellate Cells. Molecules 2018; 23:molecules23123209. [PMID: 30563120 PMCID: PMC6321126 DOI: 10.3390/molecules23123209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
Deuterium oxide (D2O) has been reported to be active toward various in vitro cell lines in combination with phytochemicals. Our objective was to describe, for the first time, the effect of D2O on the proliferation of hepatic stellate cells (HSCs). After D2O treatment, the p53-cyclin-dependent kinase (CDK) pathway was stimulated, leading to inhibition of the proliferation of HSCs and an increase in the [ATP]/[ADP] ratio. We also evaluated the role of aquaporin (AQP) 11 in activated HSCs. We found that D2O treatment decreased AQP11 expression levels. Of note, AQP11 levels elevated by a genetic approach counteracted the D2O-mediated inhibition of proliferation. In addition, the expression levels of AQP11 negatively correlated with those of p53. On the other hand, cells transfected with an AQP11-targeted small interfering RNA (siRNA) showed enhanced inhibition of proliferation. These findings suggest that the inhibition of cell proliferation by D2O in activated HSCs could be AQP11 dependent. Our previous studies have documented that bisdemethoxycurcumin (BDMC) induces apoptosis by regulating heme oxygenase (HO)-1 protein expression in activated HSCs. In the current study, we tested whether cotreatment with BDMC and D2O can modulate the AQP11-dependent inhibition of cell proliferation effectively. We observed that D2O cotreatment with BDMC significantly decreased cell proliferation compared to treatment with D2O alone, and this effect was accompanied by downregulation of HO-1 and an increase in p53 levels.
Collapse
|