1
|
Zhao S, Xie J, Zhao C, Cao W, Yu Y. Ultrasound-Targeted Microbubble Destruction Enhances the Inhibitive Efficacy of miR-21 Silencing in HeLa Cells. Med Sci Monit 2021; 27:e923660. [PMID: 33606670 PMCID: PMC7901158 DOI: 10.12659/msm.923660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown that miR-21 upregulation is related to the aggressive development of cervical cancer. Ultrasound-targeted microbubble destruction (UTMD) is a method that increases the absorption of targeted genes or drugs by cells. We focus on the role of UTMD-mediated miR-21 transfection in HeLa cells, a cervical cancer cell line. MATERIAL AND METHODS The effects of different ultrasound intensities on the transfection efficiency of miR-21-enhanced green fluorescent protein (EGFP) and miR-21 inhibitor-EGFP plasmids were determined by flow cytometry. The effects of UTMD-mediated miR-21 transfection on HeLa cell proliferation, apoptosis, migration, and invasion were measured by CCK-8, flow cytometry, wound healing experiments, and transwell migration assay, respectively. Western blot and real-time quantitative PCR were used to detect the expression of tumor-related genes. RESULTS When the ultrasound intensity was 1.5 W/cm², the miR-21 plasmid had the highest transfection efficiency. Exogenous miR-21 promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis in HeLa cells. Treatment of cells with UTMD further enhanced the effects of miR-21-EGFP and miR-21 inhibitor-EGFP. In addition, miR-21 overexpression significantly increased the expression of p-Akt, Akt, Bcl-2, Wnt, ß-catenin, matrix metalloprotein-9 (MMP-9), and epidermal growth factor (EGFR) levels, and decreased Bax expression. The regulatory role of miR-21 inhibitor-EGFP was opposite to that of miR-21-EGFP. After UTMD, miR-21-EGFP and miR-21 inhibitor-EGFP had more significant regulatory effects on these genes. CONCLUSIONS Our research revealed that an ultrasound intensity of 1.5 W/cm² is the best parameter for miR-21 transfection. UTMD can enhance the biological function of miR-21 in HeLa cells, and alter the effect of miR-21 on apoptosis, metastasis, and phosphorylation genes.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Ultrasonography, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Jing Xie
- Department of Ultrasonography, Wucheng Traditional Chinese Medicine (TMC) Hospital, Wucheng, Shandong, China (mainland)
| | - Changhua Zhao
- Department of Ultrasonography, Zhucheng People's Hospital, Zhucheng, Shandong, China (mainland)
| | - Wen Cao
- Departmeng of Oncology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Yangping Yu
- Department of Ultrasonography, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
2
|
Huang S, Ren Y, Wang X, Lazar L, Ma S, Weng G, Zhao J. Application of Ultrasound-Targeted Microbubble Destruction-Mediated Exogenous Gene Transfer in Treating Various Renal Diseases. Hum Gene Ther 2018; 30:127-138. [PMID: 30205715 DOI: 10.1089/hum.2018.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic renal disease or acute renal injury could result in end-stage renal disease or renal failure. Sonoporation, induced by ultrasound-targeted microbubble destruction (UTMD), has evolved as a new technology for gene delivery. It increases the transfection efficiency of the genes into target kidney tissues. Moreover, UTMD-mediated gene delivery can directly repair the damaged tissues or improve the recruitment and homing of stem cells in the recovery of injured tissues, which has the potential to act as a non-viral and effective method to current gene therapy. This article reviews the mechanisms and applications of UTMD in terms of renal disease, including diabetic nephropathy, renal carcinoma, acute kidney injury, renal interstitial fibrosis, nephrotoxic nephritis, urinary stones, and acute rejection.
Collapse
Affiliation(s)
- Shuaishuai Huang
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Yu Ren
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Xue Wang
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Lissy Lazar
- 2 Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, P.R. China
| | - Suya Ma
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Guobin Weng
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Jinshun Zhao
- 2 Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, P.R. China
| |
Collapse
|
3
|
Wang L, Cao T, Chen H. Treatment of glaucomatous optic nerve damage using ginsenoside Rg1 mediated by ultrasound targeted microbubble destruction. Exp Ther Med 2018; 15:300-304. [PMID: 29375689 PMCID: PMC5763670 DOI: 10.3892/etm.2017.5386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
The treatment of glaucomatous optic nervedamage using ginsenoside Rg1 mediated by ultrasound targeted microbubbles destruction was evaluated. Thirty healthy New Zealand white rabbits were subjected to injection of 0.3% carbomer solution to establish glaucomatous optic nerve damage model. Rabbits were divided into 5 groups: control group, model group, model group + intravitreal injection of nerve growth factor (NGF) group, model group + intravitreal injection of ginsenoside Rg1 group (Rg1 group), model group + intravitreal injection of ginsenoside Rg1 + ultrasound microbubble group (ultrasound group), model group + ultrasound targeted microbubble destruction (ultrasound group). Intraocular pressures were compared at 1, 2 and 4 weeks after model establishment. Rabbits were sacrificed 4 weeks after model establishment to collect retinal tissue for H&E staining. Histological changes were observed and the retinal thickness was measured. Contents of malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were measured by ELISA. Intraocular pressure was significantly higher in model group than in control group at 1 week (P<0.05). Intraocular pressure was significantly lower in the ultrasound group than in NGF group and Rg1 group at all time-points (P<0.05). The number of ganglion cells in model group was decreased significantly. Number of nuclear layer cells was significantly reduced. Thickest retina was found in control group and model group was the thinnest (P<0.05). Contents of MDA and NO in model group were significantly higher than those in NCF group and Rg1 group. SOD content in control group was higher than that in ultrasound group and model group (P<0.05). In conclusion, treatment of glaucomatous optic nerve damage using ginsenoside Rg1 mediated by ultrasound targeted microbubble destruction can reduce the level of oxidative stress, relieve intraocular pressure and reduce ganglion cell damage.
Collapse
Affiliation(s)
- Lianfeng Wang
- Section One, Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Tingting Cao
- Section One, Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Haiting Chen
- Section One, Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
4
|
Luo B, Liang H, Zhang S, Qin X, Liu X, Liu W, Zeng F, Wu Y, Yang X. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int J Nanomedicine 2015; 10:5805-17. [PMID: 26396514 PMCID: PMC4577262 DOI: 10.2147/ijn.s83582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the study reported here, a novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer was synthesized by ring-opening polymerization reaction. The perfluoropentane-filled PAEEP-PLLA nanobubbles (NBs) were prepared using the O1/O2/W double-emulsion and solvent-evaporation method, with the copolymer as the shell and liquid perfluoropentane as the core of NBs. The prepared NBs were further conjugated with lactoferrin (Lf) for tumor-cell targeting. The resulting Lf-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) nanobubbles (Lf-PAEEP-PLLA NBs) were characterized by photon correlation spectroscopy, polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, and transmission electron microscopy. The average size of the Lf-PAEEP-PLLA NBs was 328.4±5.1 nm, with polydispersity index of 0.167±0.020, and zeta potential of −12.6±0.3 mV. Transmission electron microscopy imaging showed that the Lf-PAEEP-PLLA NBs had a near-spherical structure, were quite monodisperse, and there was a clear interface between the copolymer shell and the liquid core inside the NBs. The Lf-PAEEP-PLLA NBs also exhibited good biocompatibility in cytotoxicity and hemolysis studies and good stability during storage. The high cellular uptake of Lf-PAEEP-PLLA NBs in C6 cells (low-density lipoprotein receptor-related protein 1-positive cells) at concentrations of 0–20 µg/mL indicated that the Lf provided effective targeting for brain-tumor cells. The in vitro acoustic behavior of Lf-PAEEP-PLLA NBs was evaluated using a B-mode clinical ultrasound imaging system. In vivo ultrasound imaging was performed on tumor-bearing BALB/c nude mice, and compared with SonoVue® microbubbles, a commercial ultrasonic contrast agent. Both in vitro and in vivo ultrasound imaging indicated that the Lf-PAEEP-PLLA NBs possessed strong, long-lasting, and tumor-enhanced ultrasonic contrast ability. Taken together, these results indicate that Lf-PAEEP-PLLA NBs represent a promising nano-sized ultrasonic contrast agent for tumor-targeting ultrasonic imaging.
Collapse
Affiliation(s)
- Binhua Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; College of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengwei Zhang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojuan Qin
- Department of Medical Ultrasound, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fuqing Zeng
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 2015; 12:4803-14. [PMID: 26151686 PMCID: PMC4581786 DOI: 10.3892/mmr.2015.4054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
The eye is an ideal target organ for gene therapy as it is easily accessible and immune‑privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound‑targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene‑ and drug delivery. When gene‑loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High‑amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD‑mediated gene delivery system has been widely used in pre‑clinical studies to enhance gene expression in a site‑specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood‑retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD.
Collapse
Affiliation(s)
- Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hongli Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
6
|
Sutherland JE, Day MA. Advantages and disadvantages of molecular testing in ophthalmology. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Chen ZY, Lin Y, Yang F, Jiang L, Ge SP. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 2013; 11:11. [PMID: 23594865 PMCID: PMC3653772 DOI: 10.1186/1476-7120-11-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/09/2013] [Indexed: 12/18/2022] Open
Abstract
Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD.
Collapse
Affiliation(s)
- Zhi-Yi Chen
- Department of Ultrasound Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
8
|
|
9
|
He Y, Bi Y, Hua Y, Liu D, Wen S, Wang Q, Li M, Zhu J, Lin T, He D, Li X, Wang Z, Wei G. Ultrasound microbubble-mediated delivery of the siRNAs targeting MDR1 reduces drug resistance of yolk sac carcinoma L2 cells. J Exp Clin Cancer Res 2011; 30:104. [PMID: 22035293 PMCID: PMC3213040 DOI: 10.1186/1756-9966-30-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background MDR1 gene encoding P-glycoprotein is an ATP-dependent drug efflux transporter and related to drug resistance of yolk sac carcinoma. Ultrasound microbubble-mediated delivery has been used as a novel and effective gene delivery method. We hypothesize that small interfering RNA (siRNA) targeting MDR1 gene (siMDR1) delivery with microbubble and ultrasound can down-regulate MDR1 expression and improve responsiveness to chemotherapeutic drugs for yolk sac carcinoma in vitro. Methods Retroviral knockdown vector pSEB-siMDR1s containing specific siRNA sites targeting rat MDR1 coding region were constructed and sequence verified. The resultant pSEB-siMDR1 plasmids DNA were encapsulated with lipid microbubble and the DNA release were triggered by ultrasound when added to culture cells. GFP positive cells were counted by flow cytometry to determine transfection efficiency. Quantitative real-time PCR and western blot were performed to determine the mRNA and protein expression of MDR1. P-glycoprotein function and drug sensitivity were analyzed by Daunorubicin accumulation and MTT assays. Results Transfection efficiency of pSEB-siMDR1 DNA was significantly increased by ultrasound microbubble-mediated delivery in rat yolk sac carcinoma L2 (L2-RYC) cells. Ultrasound microbubble-mediated siMDR1s delivery effectively inhibited MDR1 expression at both mRNA and protein levels and decreased P-glycoprotein function. Silencing MDR1 led to decreased cell viability and IC50 of Vincristine and Dactinomycin. Conclusions Our results demonstrated that ultrasound microbubble-mediated delivery of MDR1 siRNA was safe and effective in L2-RYC cells. MDR1 silencing led to decreased P-glycoprotein activity and drug resistance of L2-RYC cells, which may be explored as a novel approach of combined gene and chemotherapy for yolk sac carcinoma.
Collapse
Affiliation(s)
- Yun He
- Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deng W, Chen QW, Li XS, Liu H, Niu SQ, Zhou Y, Li GQ, Ke DZ, Mo XG. Bone marrow mesenchymal stromal cells with support of bispecific antibody and ultrasound-mediated microbubbles prevent myocardial fibrosis via the signal transducer and activators of transcription signaling pathway. Cytotherapy 2011; 13:431-40. [DOI: 10.3109/14653249.2010.542458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zhou S, Li S, Liu Z, Tang Y, Wang Z, Gong J, Liu C. Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice. J Exp Clin Cancer Res 2010; 29:170. [PMID: 21176239 PMCID: PMC3022677 DOI: 10.1186/1756-9966-29-170] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/23/2010] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of the study was to explore the anti-tumor effect of ultrasound -targeted microbubble destruction mediated herpes simplex virus thymidine kinase (HSV-TK) suicide gene system on mice hepatoma. Methods Forty mice were randomly divided into four groups after the models of subcutaneous transplantation tumors were estabilished: (1) PBS; (2) HSV-TK (3) HSV-TK+ ultrasound (HSV-TK+US); (4) HSV-TK+ultrasound+microbubbles (HSV-TK+US+MB). The TK protein expression in liver cancer was detected by western-blot. Applying TUNEL staining detected tumor cell apoptosis. At last, the inhibition rates and survival time of the animals were compared among all groups. Results The TK protein expression of HSV-TK+MB+US group in tumor-bearing mice tissues were significantly higher than those in other groups. The tumor inhibitory effect of ultrasound-targeted microbubble destruction mediated HSV-TK on mice transplantable tumor was significantly higher than those in other groups (p < 0.05), and can significantly improve the survival time of tumor-bearing mice. Conclusion Ultrasound-targeted microbubble destruction can effectively transfect HSV-TK gene into target tissues and play a significant inhibition effect on tumors, which provides a new strategy for gene therapy in liver cancer.
Collapse
Affiliation(s)
- Shiji Zhou
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | | | | | | | | | | | | |
Collapse
|