1
|
Song C, Wang G, Liu M, Xu Z, Liang X, Ding K, Chen Y, Wang W, Lou W, Liu L. Identification of methylation driver genes for predicting the prognosis of pancreatic cancer patients based on whole-genome DNA methylation sequencing technology. Heliyon 2024; 10:e29914. [PMID: 38737285 PMCID: PMC11088258 DOI: 10.1016/j.heliyon.2024.e29914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.
Collapse
Affiliation(s)
- Chao Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200000, China
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200000, China
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, 200000, China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Mengmeng Liu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, 200000, China
| | - Zijin Xu
- Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, 200000, China
| | - Xin Liang
- CAS Key Laboratory of Nutrition, University of Chinese Academy of Sciences, Shanghai, 200000, China
| | - Kai Ding
- CAS Key Laboratory of Nutrition, University of Chinese Academy of Sciences, Shanghai, 200000, China
| | - Yu Chen
- CAS Key Laboratory of Nutrition, University of Chinese Academy of Sciences, Shanghai, 200000, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200000, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200000, China
| | - Liang Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200000, China
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200000, China
| |
Collapse
|
2
|
Boccarelli A, Del Buono N, Esposito F. Cluster of resistance-inducing genes in MCF-7 cells by estrogen, insulin, methotrexate and tamoxifen extracted via NMF. Pathol Res Pract 2023; 242:154347. [PMID: 36738509 DOI: 10.1016/j.prp.2023.154347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Breast cancer has become a leading cause of death for women as the economy has grown and the number of women in the labor force has increased. Several biomarkers with diagnostic, prognostic, and therapeutic implications for breast cancer have been identified in studies, leading to therapeutic advances. Resistance, on the other hand, is one of clinical practice's limitations. In this paper, we use Nonnegative Matrix Factorization to automatically extract two gene signatures from gene expression profiles of wild-type and resistance MCF-7 cells, which were then investigated further using pathways analysis and proved useful in relating resistance pathways to breast cancer regardless of the stimulus that caused it. A few extracted genes (including MAOA, IL4I1, RRM2, DUT, NME4, and SUMO3) represent new elements in the functional network for resistance in MCF-7 ER+ breast cancer. As a result of this research, a better understanding of how resistance occurs or the pathways that contribute to it may allow more effective therapies to be developed.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
3
|
Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol 2022; 20:e3001858. [PMID: 36279312 PMCID: PMC9632905 DOI: 10.1371/journal.pbio.3001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cells survive chemotherapy and cause lethal relapse by entering a senescent state that facilitates expression of many phagocytosis/macrophage-related genes that engender a novel cannibalism phenotype. We used biosensors and live-cell imaging to reveal the basic steps and mechanisms of engulfment by senescent human and mouse tumor cells. We show filamentous actin in predator cells was localized to the prey cell throughout the process of engulfment. Biosensors to various phosphoinositide (PI) species revealed increased concentration and distinct localization of predator PI(4) P and PI(4,5)P2 at the prey cell during early stages of engulfment, followed by a transient burst of PI(3) P before and following internalization. PIK3C2B, the kinase responsible for generating PI(3)P, was required for complete engulfment. Inhibition or knockdown of Clathrin, known to associate with PIK3C2B and PI(4,5)P2, severely impaired engulfment. In sum, our data reveal the most fundamental cellular processes of senescent cell engulfment, including the precise localizations and dynamics of actin and PI species throughout the entire process.
Collapse
Affiliation(s)
- Wesley D. Frey
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Ashlyn Y. Anderson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hyemin Lee
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Julie B. Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Emma L. Cowles
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hua Lu
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - James G. Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| |
Collapse
|
4
|
Patowary P, Bhattacharyya DK, Barah P. SNMRS: An advanced measure for Co-expression network analysis. Comput Biol Med 2022; 143:105222. [PMID: 35121360 DOI: 10.1016/j.compbiomed.2022.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
The challenge of identifying modules in a gene interaction network is important for a better understanding of the overall network architecture. In this work, we develop a novel similarity measure called Scaling-and-Shifting Normalized Mean Residue Similarity (SNMRS), based on the existing NMRS technique [1]. SNMRS yields correlation values in the range of 0 to +1 corresponding to negative and positive dependency. To study the performance of our measure, internal validation of extracted clusters resulting from different methods is carried out. Based on the performance, we choose hierarchical clustering and apply the same using the corresponding dissimilarity (distance) values of SNMRS scores, and utilize a dynamic tree cut method for extracting dense modules. The modules are validated using a literature search, KEGG pathway analysis, and gene-ontology analyses on the genes that make up the modules. Moreover, our measure can handle absolute, shifting, scaling, and shifting-and-scaling correlations and provides better performance than several other measures in terms of cluster-validity indices. Also, SNMRS based module detection method results in interesting biologically relevant patterns from gene microarray and RNA-seq dataset. A set of crucial genes having high relevance with the ESCC are also identified.
Collapse
Affiliation(s)
- Pallabi Patowary
- Department of Computer Science and Engineering, Tezpur University, Assam, India.
| | | | - Pankaj Barah
- Dept. of Molecular Biology and Biotechnology Tezpur University, Assam, India.
| |
Collapse
|
5
|
Liu Z, Li X, Ma J, Li D, Ju H, Liu Y, Chen Y, He X, Zhu Y. Integrative Analysis of the IQ Motif-Containing GTPase-Activating Protein Family Indicates That the IQGAP3-PIK3C2B Axis Promotes Invasion in Colon Cancer. Onco Targets Ther 2020; 13:8299-8311. [PMID: 32903879 PMCID: PMC7445521 DOI: 10.2147/ott.s257729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer (CRC) is a common type of tumour, and IQGAP family proteins play an important role in many tumours. However, their roles in CRC remain unclear. Methods First, we searched many public databases to comprehensively analyze expression of IQGAPs in CRC. Next, real-time PCR, immunohistochemical (IHC), transwell, siRNA transfection and Western blot assays were used to evaluate relationships among IQGAP3 expression, clinical pathological parameters and CRC prognosis, and the underlying molecular mechanism was investigated. Results IQGAP3 was elevated in CRC tissues, whereas there was no significant change in expression of IQGAP1 or IQGAP2. Additionally, IQGAP3 expression in CRC tissues was associated with tumour progression, invasion and poor prognosis. In mechanistic studies, we found that IQGAP3 was positively coexpressed with PIK3C2B. In an in vitro assay, the PIK3C2B expression level was increased after exogenous overexpression of IQGAP3, resulting in the promotion of cell invasion, which was blocked by pretransfecting cells with PIK3C2B siRNA. Furthermore, we found that high expression of IQGAP3 and PIK3C2B correlated with tumour stage and vessel invasion in human CRC, whereby patients with high expression of both in tumours had a worse prognosis compared with patients with single-positive or double-negative tumours. Conclusion The results of our current study and corresponding previous studies provide evidence that IQGAP3 is elevated in CRC and promotes colon cancer growth and metastasis by regulating PIK3C2B activation.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xiao Li
- The 2nd Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Dechuan Li
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Haixing Ju
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yong Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yinbo Chen
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xujun He
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Yuping Zhu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| |
Collapse
|
6
|
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 2020; 10:360. [PMID: 32296634 PMCID: PMC7136497 DOI: 10.3389/fonc.2020.00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule. The selective cellular functions for PI(3,4)P2 independent of PI(3,4,5)P3 have been recently described, including clathrin-mediated endocytosis and mTOR regulation. However, the specific spatiotemporal dynamics and signaling role of PI3K minor lipid messenger PI(3,4)P2 are not well-understood. This review aims at highlighting the biological functions of this lipid downstream of phosphoinositide kinases and phosphatases and its implication in cancer metabolism.
Collapse
Affiliation(s)
- Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
7
|
Jeong KH, Kim JS, Woo JT, Rhee SY, Lee YH, Kim YG, Moon JY, Kim SK, Kang SW, Lee SH, Kim YH. Genome-wide association study identifies new susceptibility loci for diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin Genet 2019; 96:35-42. [PMID: 30883692 DOI: 10.1111/cge.13538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Genetic factors are considered to be important in the pathogenesis of diabetic nephropathy (DN). Despite several genome-wide association studies (GWASs) demonstrating that specific polymorphisms of candidate genes were associated with DN, there were some limitations in previous studies. We conducted a GWAS using customized DNA chips to identify novel susceptibility loci for DN in Korean. We analyzed a total of 414 DN cases and 474 normoalbuminuric diabetic hyper-controls across two stages using customized DNA chips containing 98 667 single nucleotide polymorphisms (SNPs). We explored the associations between SNPs and DN in samples from 87 DN cases, mostly confirmed by renal biopsy, and 104 diabetic hyper-controls, and replicated these associations in independent cohort samples with 327 DN cases and 370 diabetic hyper-controls. The top significant SNPs from the discovery samples were selected for replication in the independent cohort. rs3765156 in PIK3C2B was significantly associated with DN in the replication cohort after multiple test. The SNPs identified in our study provide new insights into the pathogenesis of DN in the Korean population. Additional studies are needed to determine biological effects and clinical utility of our findings.
Collapse
Affiliation(s)
- Kyung H Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jin S Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang Y Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yang G Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Su K Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sun W Kang
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | - Sang H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeong H Kim
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | | |
Collapse
|
8
|
Luna Coronell JA, Sergelen K, Hofer P, Gyurján I, Brezina S, Hettegger P, Leeb G, Mach K, Gsur A, Weinhäusel A. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:73-84. [PMID: 29505855 PMCID: PMC6000238 DOI: 10.1016/j.gpb.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/01/2017] [Accepted: 10/19/2017] [Indexed: 01/16/2023]
Abstract
Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs) could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC) patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples. Bioinformatics analyses reveal that compared to control samples, the immunoproteomic IgG profiling of CRC samples is mainly associated with cell death, survival, and proliferation pathways, especially proteins involved in EIF2 and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A) and CRC-related genes such as APC, AXIN1, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, differential pathways were observed between the CRC and control samples. Furthermore, 103 DIRAGs were reported in the SEREX antigen database, demonstrating our ability to identify known and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of immune responses in cancerous diseases and faithfully reflects the underlying pathology.
Collapse
Affiliation(s)
| | - Khulan Sergelen
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Philipp Hofer
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - István Gyurján
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Stefanie Brezina
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - Peter Hettegger
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Gernot Leeb
- Hospital Oberpullendorf, A-7350, Oberpullendorf, Austria
| | - Karl Mach
- Hospital Oberpullendorf, A-7350, Oberpullendorf, Austria
| | - Andrea Gsur
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria.
| |
Collapse
|
9
|
Kind M, Klukowska-Rötzler J, Berezowska S, Arcaro A, Charles RP. Questioning the role of selected somatic PIK3C2B mutations in squamous non-small cell lung cancer oncogenesis. PLoS One 2017; 12:e0187308. [PMID: 29088297 PMCID: PMC5663493 DOI: 10.1371/journal.pone.0187308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
PI3K signaling is frequently dysregulated in NSCLC-SQCC. In contrast to well characterized components of the PI3K signaling network contributing to the formation of SQCC, potential oncogenic effects of alterations in PIK3C2B are poorly understood. Here, a large cohort (n = 362) of NSCLC-SQCC was selectively screened for four reported somatic mutations in PIK3C2B via Sanger sequencing. In addition, two mutations leading to an amino acid exchange in the kinase domain (C1181, H1208R) were examined on a functional level. None of the mutations were identified in the cohort while well characterized hotspot PIK3CA mutations were observed at the expected frequency. Ultimately, kinase domain mutations in PI3KC2β were found to have no altering effect on downstream signaling. A set of SQCC tumors sequenced by The Cancer Genome Atlas (TCGA) equally indicates a lack of oncogenic potential of the kinase domain mutations or PIK3C2B in general. Taken together, this study suggests that PIK3C2B might only have a minor role in SQCC oncogenesis.
Collapse
Affiliation(s)
- Marcus Kind
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
| | - Jolanta Klukowska-Rötzler
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
- Department of Emergency Medicine, University Hospital Bern, Freiburgstrasse 16c, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Murtenstrasse 31,Bern, Switzerland
| | - Alexandre Arcaro
- University Children’s Hospital Bern, Freiburgstrasse 31, Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, Bern, Switzerland
| |
Collapse
|
10
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
11
|
Li DJ, Shi M, Wang Z. RUNX3 reverses cisplatin resistance in esophageal squamous cell carcinoma via suppression of the protein kinase B pathway. Thorac Cancer 2016; 7:570-580. [PMID: 27766776 PMCID: PMC5129150 DOI: 10.1111/1759-7714.12370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 01/02/2023] Open
Abstract
Background Preoperative chemoradiation combined with surgery has been of focus recently in order to improve prognosis in esophageal squamous cell carcinoma (ESCC) patients. Finding biological markers that may assist in predicting the therapeutic effect of chemoradiation may benefit the treatment effect. In this study, the role of RUNX3 in the formation of cisplatin resistance in ESCC was examined. Methods The study enrolled 103 stage IIa–IIIb ESCC patients who had undergone esophagectomy. RUNX3 expression in ESCC tissue was detected. Results A higher expression of RUNX3 in ESCC patients correlated with a more sensitive response to cisplatin‐based chemotherapy. A consistently lower expression of RUNX3 was found in the ESCC tissues of patients who agreed to perioperative chemotherapy compared with patients who had undergone no preoperative treatment. A lower RUNX3 expression in cisplatin‐resistant ESCC cell lines, Eca109 and TE‐1, was observed compared with parental cell lines. Heterologous RUNX3 expression significantly suppressed cisplatin resistance in Eca109 and TE‐1, both in vitro and vivo. Meanwhile, heterologous RUNX3 expression could inhibit growth and induce apoptosis in cisplatin resistant Eca109 and TE‐1 cell lines in vitro. Remarkable inhibition of the Akt pathway was observed in heterologous RUNX3 expression in Eca109 and TE‐1. Silencing Akt1 could reverse cisplatin resistance in Eca109 and TE‐1. Conclusion Our results confirmed that a loss of RUNX3 in ESCC may contribute to cisplatin‐resistance. RUNX3 could reverse cisplatin resistance via suppression of the Akt pathway in ESCC patients.
Collapse
Affiliation(s)
- De-Jun Li
- Department of ICU, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
12
|
Wu K, Yang L, Chen J, Zhao H, Wang J, Xu S, Huang Z. miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β. FEBS Lett 2015; 589:1911-9. [PMID: 26073258 DOI: 10.1016/j.febslet.2015.05.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
Abstract
miR-362-5p is down-regulated in high-risk neuroblastoma and can function as a tumor suppressor. However, its role remains poorly understood. We show that miR-362-5p is down-regulated in metastatic neuroblastoma compared with primary neuroblastoma. Overexpression of miR-362-5p inhibits cell proliferation, migration and invasion of neuroblastoma cells in vitro and suppresses tumor growth of neuroblastoma in vivo. Phosphatidylinositol 3-kinase (PI3K)-C2β is a target of miR-362-5p. Knockdown of PI3K-C2β by siRNA had a similar effect to overexpression of miR-362-5p on SH-SY5Y cells. Overexpression of PI3K-C2β partially reversed tumor-suppressive effects of miR-362-5p. We suggest that miR-362-5p suppresses neuroblastoma cell growth and motility, partially by targeting PI3K-C2β.
Collapse
Affiliation(s)
- Kai Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Liucheng Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Jianfeng Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Haijun Zhao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Jianjun Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Shuai Xu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
13
|
Wang CK, Zhang Y, Zhang ZJ, Qiu QW, Cao JG, He ZM. Effects of VBMDMP on the reversal of cisplatin resistance in human lung cancer A549/DDP cells. Oncol Rep 2014; 33:372-82. [PMID: 25394854 DOI: 10.3892/or.2014.3607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/20/2014] [Indexed: 11/05/2022] Open
Abstract
Tumor drug resistance is a major obstacle to cancer chemotherapy. We previously constructed a fusion protein based on two tumstatin-derived sequences named recombinant VBMDM (rVBMDMP). We preliminarily confirmed its inhibition of HUVEC and colon cancer cell growth. The present study further systematically observed the inhibitory effect of rVBMDMP on lung cancer cell growth and analyzed a possible mechanism to provide a theoretical basis for the development of new antitumor protein drugs. The effect of rVBMDMP on human lung adenocarcinoma (A549) and cisplatin-resistant human lung adenocarcinoma (A549/DDP) cell proliferation was evaluated by MTS assay. Hoechst 33342 staining performed together with fluorescence microscopy and immunoblot analysis were used to examine the effects of rVBMDMP on the apoptosis of A549/DDP cells. A protein phosphorylation chip was used to identify changes in rVBMDMP-induced signaling protein phosphorylation. Changes in the phosphatidylinositol 3 kinase (PI3K)/Akt signal transduction pathway and expression of multidrug resistance protein (MRP-2)-related molecules following rVBMDMP treatment in A549/DDP cells were evaluated by western blot analysis. A lung cancer xenograft model was used to evaluate the reversal effect of rVBMDMP on drug-resistance of A549/DDP cell tumors to cisplatin in vivo. The results demonstrated that rVBMDMP increased the phosphorylation of 79 signaling proteins, including focal adhesion kinase (FAK), caspase-6, Fas, FasL and FAF1 and downregulated 30 signaling proteins, including integrin αV, integrin β3, PI3K/Akt, NF-κB and MRP-2 compared with the controls. rVBMDMP also increased the sensitivity of A549 and A549/DDP cells to cisplatin and directly induced apoptosis, which may be related to MRP-2 and Bcl-2 downregulation. The effects of growth inhibition and apoptosis induction of rVBMDMP on A549/DDP cells may be related to the inhibition of integrin αVβ3 and PI3K/Akt protein phosphorylation. Finally, we observed an increase in cancer cell sensitivity to cisplatin by rVBMDMP using the A549/DDP cell xenograft model in nude mice. Our study suggests that rVBMDMP may be an effective potential chemotherapy sensitizer and may be a viable drug candidate in anticancer therapies.
Collapse
Affiliation(s)
- Cheng-Kun Wang
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guandong 510182, P.R. China
| | - Yang Zhang
- Cancer Research Institute, University of South China, Hunan, Hengyang 421001, P.R. China
| | - Zhi-Jie Zhang
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guandong 510182, P.R. China
| | - Qin-Wei Qiu
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guandong 510182, P.R. China
| | - Jian-Guo Cao
- Medical College, Hunan Normal University, Hunan, Changsha 410006, P.R. China
| | - Zhi-Min He
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guandong 510182, P.R. China
| |
Collapse
|
14
|
Heavey S, O’Byrne KJ, Gately K. Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev 2014; 40:445-56. [DOI: 10.1016/j.ctrv.2013.08.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/11/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
|
15
|
Wang X, Gao P, Lin F, Long M, Weng Y, Ouyang Y, Liu L, Wei J, Chen X, He T, Zhang H, Dong K. Wilms' tumour suppressor gene 1 (WT1) is involved in the carcinogenesis of Lung cancer through interaction with PI3K/Akt pathway. Cancer Cell Int 2013; 13:114. [PMID: 24228711 PMCID: PMC3833182 DOI: 10.1186/1475-2867-13-114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/10/2013] [Indexed: 11/21/2022] Open
Abstract
Absract Although studies have shown the oncogene WT1 is overexpressed in lung cancer, there is no data showing the implication of WT1 in lung cancer biology. In the present study, we first demonstrated that isotype C of WT1 was conservely overexpressed in 20 lung cancer patient specimens. Knockdown of WT1 by small interference RNA (siRNA) transfection resulted in a significant inhibition of cell proliferation, induction of cell cycle arrest at G1 phase, and the expression change of BCL-2 family genes in WT1+ A549 cells. Furthermore, we found that DDP treatment could decrease the WT1 mRNA expression level by 5% and 15% at a dose of 1 μg/ml, by 25% and 40% at a dose of 2 μg/ml for 24 and 48 h, respectively. In the mean time, DDP treatment also reduced the PI3K/AKT pathway activity. Further analysis by using siRNA targeting the AKT-1 and the PI3K pathway inhibitor Ly294002 revealed that the AKT-1 siRNA reduced the WT1 expression effectively in A549 cells, and the same result was observed in Ly294002 treated cells, indicating that DDP treatment could down regulate WT1 expression through the PI3K/AKT pathway. Of particular interest, knockdown of WT1 also inhibited the AKT expression effectively, Chip assay further confirmed that WT1 is a transcription factor of AKT-1. We thus concluded that there is a positive feedback loop between WT1 and AKT-1. Taken together, DDP treatment downregulates the WT1 expression through the PI3K/AKT signaling pathway, and there is a feedback between WT1 and AKT-1; WT1 is involved in cellular proliferation in A549 cells, WT1 inhibition in combination with DDP will provide a new light for lung cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | | |
Collapse
|
16
|
Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opin Ther Targets 2013; 17:921-36. [DOI: 10.1517/14728222.2013.808333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Yang Y, Li H, Hou S, Hu B, Liu J, Wang J. Differences in gene expression profiles and carcinogenesis pathways involved in cisplatin resistance of four types of cancer. Oncol Rep 2013; 30:596-614. [PMID: 23733047 DOI: 10.3892/or.2013.2514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/04/2013] [Indexed: 11/06/2022] Open
Abstract
Cisplatin-based chemotherapy is the standard therapy used for the treatment of several types of cancer. However, its efficacy is largely limited by the acquired drug resistance. To date, little is known about the RNA expression changes in cisplatin-resistant cancers. Identification of the RNAs related to cisplatin resistance may provide specific insight into cancer therapy. In the present study, expression profiling of 7 cancer cell lines was performed using oligonucleotide microarray analysis data obtained from the GEO database. Bioinformatic analyses such as the Gene Ontology (GO) and KEGG pathway were used to identify genes and pathways specifically associated with cisplatin resistance. A signal transduction network was established to identify the core genes in regulating cancer cell cisplatin resistance. A number of genes were differentially expressed in 7 groups of cancer cell lines. They mainly participated in 85 GO terms and 11 pathways in common. All differential gene interactions in the Signal-Net were analyzed. CTNNB1, PLCG2 and SRC were the most significantly altered. With the use of bioinformatics, large amounts of data in microarrays were retrieved and analyzed by means of thorough experimental planning, scientific statistical analysis and collection of complete data on cancer cell cisplatin resistance. In the present study, a novel differential gene expression pattern was constructed and further study will provide new targets for the diagnosis and mechanisms of cancer cisplatin resistance.
Collapse
Affiliation(s)
- Yong Yang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Martini M, Ciraolo E, Gulluni F, Hirsch E. Targeting PI3K in Cancer: Any Good News? Front Oncol 2013; 3:108. [PMID: 23658859 PMCID: PMC3647219 DOI: 10.3389/fonc.2013.00108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it’s one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug candidates include PI3K inhibitors, both pan- and isoform-specific inhibitors, AKT, mTOR, and dual PI3K/mTOR inhibitors. As novel compounds progress into clinical trials, it’s becoming urgent to identify and select patient population that most likely benefit from PI3K inhibition. In this review we will discuss individual PIK3CA mutations as predictors of sensitivity and resistance to targeted therapies, leading to use of novel PI3K/mTOR/AKT inhibitors to a more “personalized” treatment.
Collapse
Affiliation(s)
- Miriam Martini
- Molecular Biotechnology Center, University of Turin Turin, Italy
| | | | | | | |
Collapse
|
19
|
Jakhesara SJ, Koringa PG, Joshi CG. Identification of novel exons and transcripts by comprehensive RNA-Seq of horn cancer transcriptome in Bos indicus. J Biotechnol 2013; 165:37-44. [DOI: 10.1016/j.jbiotec.2013.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
20
|
Błajecka K, Marinov M, Leitner L, Uth K, Posern G, Arcaro A. Phosphoinositide 3-kinase C2β regulates RhoA and the actin cytoskeleton through an interaction with Dbl. PLoS One 2012; 7:e44945. [PMID: 22984590 PMCID: PMC3440356 DOI: 10.1371/journal.pone.0044945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.
Collapse
Affiliation(s)
- Karolina Błajecka
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Marin Marinov
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Laura Leitner
- Department of Molecular Biology, AG Regulation of Gene Expression, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristin Uth
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Guido Posern
- Department of Molecular Biology, AG Regulation of Gene Expression, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Alexandre Arcaro
- Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Falasca M, Maffucci T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 2012; 443:587-601. [PMID: 22507127 DOI: 10.1042/bj20120008] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Class II isoforms of PI3K (phosphoinositide 3-kinase) are still the least investigated and characterized of all PI3Ks. In the last few years, an increased interest in these enzymes has improved our understanding of their cellular functions. However, several questions still remain unanswered on their mechanisms of activation, their specific downstream effectors and their contribution to physiological processes and pathological conditions. Emerging evidence suggests that distinct PI3Ks activate different signalling pathways, indicating that their functional roles are probably not redundant. In the present review, we discuss the recent advances in our understanding of mammalian class II PI3Ks and the evidence suggesting their involvement in human diseases.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | |
Collapse
|