1
|
Huang H, Lu Q, Yuan X, Zhang P, Ye C, Wei M, Yang C, Zhang L, Huang Y, Luo X, Luo J. Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Chem Biol Interact 2022; 365:110068. [PMID: 35917943 DOI: 10.1016/j.cbi.2022.110068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Osteosarcoma (OS) is an aggressive malignant skeletal tumor characterized by an extremely poor prognosis and a high tendency to recur. The frequently used anti-OS chemotherapy regents are often limited by drug resistance and severe adverse events. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. Andrographolide (AG), a diterpenoid lactone isolated from Andrographis paniculata, has been proved to possess anti-tumor activity against several human cancer types. In this current study, we evaluated the inhibitory effect of AG on human OS cells and probed the possible mechanism. We found that AG inhibited the proliferation of human OS cells and blocked cell cycle at G2/M phase. Furthermore, AG impeded the migration and invasion, while promoted the apoptosis of human OS cells. Moreover, we found that AG inhibited OS growth and lung metastasis in orthotopic transplantation model. Mechanistically, we demonstrated that AG suppressed the activity of Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Notably, we validated that AG synergized with the inhibitors of Wnt/β-catenin, PI3K/AKT and NF-κB to suppress the proliferation, migration and invasion of human OS cells. Collectively, our study conclusively demonstrates that AG inhibits the growth of human OS cells, thus, may be a promising candidate for the treatment of OS.
Collapse
Affiliation(s)
- Huakun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Qiuping Lu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaohui Yuan
- Department of Medical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441021, Xiangyang, Hubei, China
| | - Ping Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Caihong Ye
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Mengqi Wei
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Chunmei Yang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Lulu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Jinyong Luo
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
2
|
Integrated Microarray to Identify the Hub miRNAs and Constructed miRNA-mRNA Network in Neuroblastoma Via Bioinformatics Analysis. Neurochem Res 2020; 46:197-212. [PMID: 33104965 DOI: 10.1007/s11064-020-03155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
Neuroblastomas (NB) are childhood malignant tumors originating in the sympathetic nervous system. MicroRNAs (miRNAs) play an essential regulatory role in tumorigenesis and development. In this study, NB miRNA and mRNA expression profile data in the Gene Expression Omnibus database were used to screen for differentially expressed miRNAs (DEMs) and genes (DEGs). We used the miRTarBase and miRSystem databases to predict the target genes of the DEMs, and we selected target genes that overlapped with the DEGs as candidate genes for further study. Annotations, visualization, and the DAVID database were used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the candidate genes. Additionally, the protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed and visualized using the STRING database and Cytoscape, and the hub modules were analyzed for function and pathway enrichment using the DAVID database and BiNGO plug-in. 107 DEMs and 1139 DEGs were identified from the miRNA and mRNA chips, respectively. 4390 overlapping target genes were identified using the two databases, and 405 candidate genes which intersected with the DEGs were selected. These candidate genes were enriched in 363 GO terms and 24 KEGG pathways. By constructing a PPI network and a miRNA-mRNA regulatory network, three hub miRNAs (hsa-miR-30e-5p, hsa-miR-15a, and hsa-miR-16) were identified. The target genes of the hub miRNAs were significantly enriched in the following pathways: microRNAs in cancer, the PI3K-Akt signaling pathway, pathways in cancer, the p53 signaling pathway, and the cell cycle. In summary, our results have identified candidate genes and pathways related to the underlying molecular mechanism of NB. These findings provide a new perspective for NB research and treatment.
Collapse
|
3
|
Sun F, Yu Z, Wu B, Zhang H, Ruan J. LINC00319 promotes osteosarcoma progression by regulating the miR-455-3p/NFIB axis. J Gene Med 2020; 22:e3248. [PMID: 32621625 DOI: 10.1002/jgm.3248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Numerous studies have shown that aberrant expression of long non-coding RNAs (lncRNAs) is associated with the development and metastasis of osteosarcoma (OS). However, the role and function of LINC00319 with respect to regulating OS progression is unknown. The present study aimed to reveal the function and related mechanism of LINC00319 in OS. METHODS The expression of LINC00319, miR-455-3p and nuclear factor IB (NFIB) in OS cells and tissues was determined using a reverse transcriptase-polymerase chain reaction (PCR). The sublocalization of LINC00319 was predicted by the lncATLAS database (http://lncatlas.crg.eu) and RNA fluorescence in situ hybridization (FISH) was further performed to detect the subcellular localization of LINC00319. LINC00319, miR-455-3p and NFIB target sites were predicted by StarBase (http://starbase.sysu.edu.cn/index.php) and validated using a dual luciferase reporter gene assay. We subsequently performed LINC00319 gain- and loss-of-function studies to define the role of LINC00319 in OS cell migration. RESULTS PCR results showed that lncRNA LINC00319 exhibited high expression in tumor cells and tissue. Moreover, LINC00319 was positioned in the cytoplasm, which was identified by FISH. Knockdown of lncRNA LINC00319/NFIB or overexpression of miR-455-3p blocked the migration of OS cells. In addition, the inhibitory effect of migration with the knockdown of lncRNA LINC00319 was partially blocked by administration of miR-455-3p inhibitor. CONCLUSIONS lncRNA LINC00319 may promote OS progression by regulating the miR-455-3p/NFIB axis, which probably serves as an innovative potential indicator of prognosis and a target of therapy for OS.
Collapse
Affiliation(s)
- Farui Sun
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Ziliang Yu
- School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bingbing Wu
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haiping Zhang
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Ruan
- Department of Psychology, Huangshi Psychiatric Hospital, Huangshi, Hubei, China
| |
Collapse
|