1
|
Huang BX, Jia ZC, Yang X, Cheng CL, Liu XR, Zhang J, Chen MX, Yang JF, Chen YS. Genome-wide comparison and in silico analysis of splicing factor SYF2/NTC31/p29 in eukaryotes: Special focus on vertebrates. Front Genet 2022; 13:873869. [PMID: 36118875 PMCID: PMC9479762 DOI: 10.3389/fgene.2022.873869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
The gene SYF2—an RNA splicing factor—can interact with Cyclin D-type binding protein 1 (GICP) in many biological processes, including splicing regulation, cell cycle regulation, and DNA damage repair. In our previous study we performed genome-wide identification and functional analysis of SYF2 in plant species. The phylogenetic relationships and expression profiles of SYF2 have not been systematically studied in animals, however. To this end, the gene structure, genes, and protein conserved motifs of 102 SYF2 homologous genes from 91 different animal species were systematically analyzed, along with conserved splicing sites in 45 representative vertebrate species. A differential comparative analysis of expression patterns in humans and mice was made. Molecular bioinformatics analysis of SYF2 showed the gene was conserved and functional in different animal species. In addition, expression pattern analysis found that SYF2 was highly expressed in hematopoietic stem cells, T cells, and lymphoid progenitor cells; in ovary, lung, and spleen; and in other cells and organs. This suggests that changes in SYF2 expression may be associated with disease development in these cells, tissues, or organs. In conclusion, our study analyzes the SYF2 disease resistance genes of different animal species through bioinformatics, reveals the relationship between the SYF2 genotype and the occurrence of certain diseases, and provides a theoretical basis for follow-up study of the relationship between the SYF2 gene and animal diseases.
Collapse
Affiliation(s)
- Bao-Xing Huang
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zi-Chang Jia
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Chao-Lin Cheng
- Department of Biology, Hong Kong Baptist University, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiao-Rong Liu
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jing-Fang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jing-Fang Yang, ; Yun-Sheng Chen,
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Jing-Fang Yang, ; Yun-Sheng Chen,
| |
Collapse
|
2
|
Han W, Bu X, Liu Y, Liu F, Ren Y, Cui Y, Kong S. Clinical value of miR-135 and miR-20a combined with multi-detector computed tomography in the diagnosis of gastric cancer. World J Surg Oncol 2021; 19:283. [PMID: 34537058 PMCID: PMC8449899 DOI: 10.1186/s12957-021-02395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background To study the clinical value of miR-135 and miR-20a combined with multi-detector computed tomography (MDCT) in the diagnosis of gastric cancer (GC). Method A total of 146 patients with GC admitted to our hospital from January 2017 to June 2019 were selected and enrolled in the GC group. Another 103 patients with gastritis received in the same period were selected for the non-GC group. Besides, 95 healthy subjects who received physical examination in our hospital were selected into the healthy control group. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of serum miR-135 and miR-20a for each group. MDCT was used for detecting the clinical staging map of the enrolled patients. Pearson’s correlation analysis was used to analyze the correlation between serum miR-135 and miR-20a in patients with GC. The receiver operating characteristic (ROC) curve was drawn to analyze value of miR-135 and miR-20a in the diagnosis of GC. Results Compared with non-GC group and healthy control group, the levels of serum miR-135 and miR-20a increased significantly in the GC group, while no significant difference was found between non-GC group and healthy control group (P > 0.05). Analysis of the relationship with clinical characteristics showed that the expression of serum miR-135 and miR-20a in the GC group was significantly correlated with the progression of GC, TNM stage, degrees of differentiation, status of lymph node metastasis, and distant metastasis (P < 0.01). Pearson’s correlation analysis results showed positive correlations between miR-135 and miR-20a (r = 0.634, P = 0.000). The ROC analysis results showed that the optimal diagnostic values of miR-135 and miR-20a for GC were 7.56 and 5.82 respectively. The area under the curve (AUC) was 0.873 and 0.793 respectively. The 95% confidence interval (CI) was 0.811-0.935 and 0.697-0.890 respectively. The sensitivity and specificity of miR-135 and miR-20a combined with MDCT in the diagnosis of GC were 90.41% and 93.20% respectively. The sensitivity of combined use was significantly higher than that of single detection (P < 0.01). Conclusion There are high expression levels of serum miR-135 and miR-20a in patients with GC. A combined detection of miR-135 and miR-20a with MDCT can improve the diagnostic sensitivity of GC and improve the accuracy of the final diagnosis. Therefore, multiple combined detection is valuable in the diagnosis of GC.
Collapse
Affiliation(s)
- Wenwen Han
- Department of CT Room, Dongying People's Hospital, No. 317 NanYi Road, Dongying, 257091, China
| | - Xiangzhen Bu
- Department of Radiology, Dongying District People's Hospital, Dongying, 257000, China
| | - Yanli Liu
- Health Care Department, Dongying People's Hospital, Dongying, 257091, China
| | - Fang Liu
- Department of Oncology, Dongying People's Hospital, Dongying, 257091, China
| | - Yujie Ren
- Department of CT Room, Dongying People's Hospital, No. 317 NanYi Road, Dongying, 257091, China
| | - Yongsheng Cui
- Department of CT Examination, Shengli Oilfield Central Hospital, Dongying, 257000, China
| | - Shuhong Kong
- Department of CT Room, Dongying People's Hospital, No. 317 NanYi Road, Dongying, 257091, China.
| |
Collapse
|
3
|
Inhibited HDAC3 promotes microRNA-376c-3p to suppress malignant phenotypes of gastric cancer cells by reducing WNT2b. Genomics 2021; 113:3512-3522. [PMID: 34284078 DOI: 10.1016/j.ygeno.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Our study aims to identify the impact of histone deacetylase 3 (HDAC3) and microRNA-376c-3p (miR-376c-3p) on gastric cancer (GC) by targeting wingless-type MMTV integration site family member 2b (WNT2b). METHODS Levels of miR-376c-3p, HDAC3 and WNT2b were assessed. GC cells were treated with altered HDAC3 or miR-376c-3p to evaluate their biological functions, and rescue experiment was performed to assess the effect of WNT2b on GC cells. The tumor growth in vivo was observed. RESULTS HDAC3 and WNT2b were up-regulated while miR-376c-3p was reduced in GC tissues and cell lines. The inhibited HDAC3 or elevated miR-376c-3p could restrain malignant behaviors of GC cells in vitro, and also suppress the xenograft growth. WNT2b silencing reduced the effect of miR-376c-3p inhibition while WNT2b overexpression mitigated that of miR-376c-3p promotion on GC cell growth. CONCLUSION Inhibiting HDAC3 promotes miR-376c-3p to suppress malignant phenotypes of GC cells via reducing WNT2b, thereby restricting GC development.
Collapse
|
4
|
Hare A, Zeng M, Rehemutula A, Su SK, Wang HF. Hsa-circ_0000064 accelerates the malignant progression of gastric cancer via sponging microRNA-621. Kaohsiung J Med Sci 2021; 37:841-850. [PMID: 34245111 DOI: 10.1002/kjm2.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most common digestive system tumors in the world. Many circular RNAs (circRNAs) are involved in the progression of GC. The purpose of this study was to delve into the expression characteristics and biological functions of circ_0000064 in GC, and further study its mechanisms. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect circ_0000064 expression in 61 GC tissues and cell lines. Circ_0000064 knockdown was successfully modeled with siRNA. The effects of circ_0000064 on the biological functions of GC cells were analyzed by CCK-8, BrdU, and Transwell assays. Bioinformatics and dual-luciferase reporter gene assay were adopted to explore the relations between circ_0000064 and microRNA-621 (miR-621). Western blot was used to examine the regulatory function of circ_0000064 and miR-621 on SYF2 pre-mRNA splicing factor 2. Cric_0000064 expression was elevated in GC tissues and cell lines. Knocking down cric_0000064 could inhibit the viability, migration, and invasion of GC cells. Dual-luciferase reporter gene assay showed that miR-621 could bind circ_0000064 and SYF2 3'UTR; in addition, miR-621 overexpression or SYF2 knockdown could partially weaken the cancer-promoting effect of circ_0000064 on GC cells. Circ_0000064 expression was negatively correlated with miR-621 expression in GC tissues while positively with SYF2 expression. Circ_0000064 can participate in the GC progression via modulating miR-621/SYF2 axis. This implies that circ_0000064 may be a new diagnosed biomarker or a new therapeutic target of GC.
Collapse
Affiliation(s)
- Ayiguli Hare
- Department of Chest and Abdominal Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Min Zeng
- Department of Chest and Abdominal Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Aizimaiti Rehemutula
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Shi-Kun Su
- Department of Chest and Abdominal Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Hai-Feng Wang
- Department of Chest and Abdominal Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| |
Collapse
|
5
|
Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, Ragno P, Margheri F, Laurenzana A. CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Front Oncol 2021; 11:663225. [PMID: 34055629 PMCID: PMC8163229 DOI: 10.3389/fonc.2021.663225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR “rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|
6
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Zhou J, Xiao D, Qiu T, Li J, Liu Z. Loading MicroRNA-376c in Extracellular Vesicles Inhibits Properties of Non-Small Cell Lung Cancer Cells by Targeting YTHDF1. Technol Cancer Res Treat 2020; 19:1533033820977525. [PMID: 33280517 PMCID: PMC7724269 DOI: 10.1177/1533033820977525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Extracellular vesicles (Evs) secreted from cells have been revealed to
mediate signal transduction between cells. Nevertheless, the mechanisms
through which molecules transported by EVs function remain to be elucidated.
In the present study, the functional relevance of endothelial cells
(ECs)-secreted Evs carrying microRNA-376c (miR-376c) in the biological
activities of non-small cell lung cancer (NSCLC) cells was investigated,
including the related mechanisms. Methods: Two cell lines with the highest YTH N6-methyladenosine (m6A) RNA binding
protein 1 (YTHDF1) expression were selected for subsequent experiments.
Cellular proliferation, migration, invasion and apoptosis were measured by
EdU, wound healing, Transwell assays and flow cytometry, respectively. The
binding relationship between miR-376c and YTHDF1 was analyzed by
dual-luciferase reporter assays. The miR-376c, YTHDF1 and β-catenin
expression was evaluated by qPCR assays and western blot assays. Results: The expression patterns of YTHDF1 were higher in NSCLC cells, whereas
miR-376c was reduced versus the normal bronchial epithelial cells. Silencing
of YTHDF1 repressed NSCLC cell proliferation, invasion and migration
abilities, whereas enhanced apoptosis. miR-376c negatively modulated YTHDF1
expression. Under co-culture conditions, ECs transmitted miR-376c into NSCLC
cells through Evs, and inhibited the intracellular YTHDF1 expression and the
Wnt/β-catenin pathway activation. Rescue experiments revealed that YTHDF1
overexpression reversed the inhibitory role of miR-376c released by EC-Evs
in NSCLC cells. Conclusion: EC-delivered Evs inhibit YTHDF1 expression and the Wnt/β-catenin pathway
induction via miR-376c overexpression, thus inhibiting the malignant
phenotypes of NSCLC cells.
Collapse
Affiliation(s)
- Jianying Zhou
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang,
Jiangxi, People’s Republic of China
| | - Dan Xiao
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang,
Jiangxi, People’s Republic of China
| | - Tingting Qiu
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang,
Jiangxi, People’s Republic of China
| | - Jun Li
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang,
Jiangxi, People’s Republic of China
| | - Zhentian Liu
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang,
Jiangxi, People’s Republic of China
- Zhentian Liu, Department of Thoracic
Oncology, Jiangxi Cancer Hospital, No. 519, East Beijing Road, Qingshanhu
District, Nanchang 330029, Jiangxi, People’s Republic of China.
| |
Collapse
|
8
|
Hu P, Wang K, Zhou D, Wang L, Zhao M, Wang W, Zhang Y, Liu Y, Yu R, Zhou X. GOLPH3 Regulates Exosome miRNA Secretion in Glioma Cells. J Mol Neurosci 2020; 70:1257-1266. [PMID: 32227282 DOI: 10.1007/s12031-020-01535-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
We aimed to examine whether golgi protein GOLPH3 could affect the secretion of glioma cell-derived exosomes. The exosomes were extracted by ultra-centrifugation from the supernatant of U251 and U87 cell cultures and identified by transmission electron microscopy (TEM), Malvern analyzer, and western blot. The quantity of exosomes was examined by measuring the total protein levels and the number of multiple vesicle bodies (MVBs), the source of exosomes. The exosome miRNAs were analyzed by high-throughput sequencing followed by GO and KEGG analysis, and validated by qRT-PCR. GOLPH3 could not affect the total protein levels of exosomes and the number of MVBs. However, we found 149 differentially expressed miRNAs in exosomes between vector and GOLPH3 over-expression group, and 14 miRNAs were only examined in GOLPH3 over-expression cells. The predicted target genes of these miRNAs had functions in binding and catalytic activity, which were enriched in the pathways of endocytosis, RNA transportation, thyroid hormone signaling and miRNAs in cancer. GOLPH3 could not affect the quantity of exosomes, but rather contribute to miRNA expression in exosomes, which may play some functions in the promotion effect of GOLPH3 on glioma development.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weibing Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yushuai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|