1
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
2
|
Cao J, Kuang D, Luo M, Wang S, Fu C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2022; 617:60-67. [PMID: 35679712 DOI: 10.1016/j.bbrc.2022.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease caused by the severe and acute response of the lungs to a variety of direct and indirect insults. Patients with ALI are currently treated mainly with respiratory support due to inadequate understanding of ALI progression. Alveolar epithelial cells produced thymic stromal lymphopoietin (TSLP) has been proved to worsen ALI by triggering airway inflammation. However, the regulation mechanism of TSLP expression remains unclear. In this study, we identified the crucial role played by circNCLN in lipopolysaccharide (LPS)-induced ALI. We demonstrated for the first time that miR-291a-3p could directly bind to the 3'UTR of TSLP and suppress TSLP expression in alveolar epithelial cells. Mechanistically, our data identified that circNCLN acts as a molecular sponge to antagonize miR-291a-3p and thereby maintaining the expression of TSLP in alveolar epithelial cells. Importantly, targeting circNCLN by its antisense oligonucleotide (ASO) markedly alleviated LPS-induced ALI. Therefore, our results suggested that circNCLN/miR-291a-3p/TSLP axis may be an important signaling in LPS-induced ALI and circNCLN inhibition may serve as a potential treatment of ALI.
Collapse
Affiliation(s)
- Jianwei Cao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Shanzhong Wang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Chunlai Fu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
3
|
Gopi C, Dhanaraju MD, Dhanaraju K. Antisense oligonucleotides: recent progress in the treatment of various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antisense oligonucleotides are a promising novel class of therapeutic agents to treat different diseases in living things. They provide an efficient method for making target-selective agents because they change gene expression sequences. Therefore, the malfunctioning protein could be stopped, and the source of disease would be obliterated. The existing reviews of antisense oligonucleotides are focusing on discovery, development and concept. However, there is no review paper concerning the latest development of antisense oligonucleotides and their different therapeutic uses. Therefore, the present work has been targeting a comprehensive summary of newly synthesized antisense oligonucleotides and their biological activities.
Main body
Antisense oligonucleotides are different from traditional therapeutic agents that are planned to interact with mRNA and modulate protein expression through a unique mechanism of action. In the last three decades, several researchers revealed the newer antisense oligonucleotides found with a high therapeutic profile due to more selective action on the drug target and thus producing a lesser side effect and low toxicity. This review emphasizes the research work on antisense oligonucleotides and their therapeutic activities.
Short conclusion
With the support of the literature review, here we enlisted various antisense oligonucleotides that were prepared by appropriate technique and explored their pharmacological activities. To the best of our knowledge, it is the right time to consider the antisense oligonucleotides as a perfect choice of treatment for different diseases due to conceptual simplicity, more selective action, lesser side effects, low toxicity and permanent cure.
Graphical abstract
Collapse
|
4
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
5
|
Yang G, Zhao Y, Gong A, Miao W, Yan L, Nie P, Wang Z. Improved Cellular Delivery of Antisense Oligonucleotide for miRNA-21 Imaging In Vivo Using Cell-Penetrating Peptide-Based Nanoprobes. Mol Pharm 2021; 18:787-795. [PMID: 33480702 DOI: 10.1021/acs.molpharmaceut.0c00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most oligonucleotides fail to enter a cell and cannot escape from endosomes after endocytosis because of their negative charge and large molecular weight. More efficient cellular delivery of oligonucleotides should be developed for the widespread implementation of antisense imaging. The purpose of this study was to construct a novel antisense nanoprobe, 99mTc-labeled anti-miRNA oligonucleotides/cell-penetrating peptide PepFect6 (99mTc-AMO/PF6), and to evaluate its efficacy for imaging the miRNA-21 expression in A549 lung adenocarcinoma xenografts. Naked AMO and commercial Lipofectamine 2000-based nanoparticles (AMO/LIP) were used for comparison. The cellular delivery efficiency of AMO/PF6 was first investigated by laser confocal scanning microscopy using Cy5.5-labeled probes and further validated by in vivo fluorescence imaging. Then, the probes were labeled with 99mTc via hydrazinonicotinamide (HYNIC). The cytotoxicity assay, cellular uptake, and retention kinetics of the probes were evaluated in vitro. The biodistribution of the probes was investigated in A549 lung cancer xenografts, and SPECT imaging was performed in vivo. AMO/PF6 showed lower cytotoxicity than AMO/LIP (P < 0.05) but showed no significant difference with naked AMO. Fluorescence microscopy demonstrated more extensive and scattered signal distribution inside the A549 cells by AMO/PF6 than AMO/LIP. The labeling efficiency of 99mTc-AMO/PF6 was 72.6 ± 1.42%, and the specific activity was 11.6 ± 0.13 MBq/ng. The cellular uptake of 99mTc-PF6/AMO peaked at 12 h, with the uptake of 11.24 ± 0.12 mol/cell × 10-16, and the cellular retention of 99mTc-AMO/PF6 was 3.92 ± 0.15 mol/cell × 10-16 at 12 h after interrupted incubation. AMO/PF6 showed higher cellular uptake and retention than naked AMO and AMO/LIP. The biodistribution study showed that the tumor had the highest radioactivity accumulation, with the uptake ratio of tumor/muscle (T/M) increasing from 14.59 ± 0.67 to 21.76 ± 0.98 between 1 and 6 h after injection, followed by the uptake in the kidneys and the liver. The results of in vivo fluorescence and SPECT imaging were consistent with the results of the biodistribution. The tumor was visualized at 6 h after injection of AMO/PF6 with the highest T/M ratio among these probes (P < 0.05). PF6 improves cellular delivery of antisense oligonucleotides via noncovalent nanoparticles. 99mTc-AMO/PF6 shows favorable imaging properties and is promising for miRNAs imaging in vivo.
Collapse
Affiliation(s)
- Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| | - Yujun Zhao
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| | - Aidi Gong
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| | - Wenjie Miao
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| | - Lei Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Zhenguang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao 266061, Shandong, China
| |
Collapse
|
6
|
Amido-Bridged Nucleic Acid-Modified Antisense Oligonucleotides Targeting SYT13 to Treat Peritoneal Metastasis of Gastric Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:791-802. [PMID: 33230476 PMCID: PMC7644579 DOI: 10.1016/j.omtn.2020.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Patients with peritoneal metastasis of gastric cancer have dismal prognosis, mainly because of inefficient systemic delivery of drugs to peritoneal tumors. We aimed to develop an intraperitoneal treatment strategy using amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides (ASOs) targeting synaptotagmin XIII (SYT13) and to identify the function of SYT13 in gastric cancer cells. We screened 71 candidate oligonucleotide sequences according to SYT13-knockdown efficacy, in vitro activity, and off-target effects. We evaluated the effects of SYT13 knockdown on cellular functions and signaling pathways, as well as the effects of intraperitoneal administration to mice of AmNA-modified anti-SYT13 ASOs. We selected the ASOs (designated hSYT13-4378 and hSYT13-4733) with the highest knockdown efficiencies and lowest off-target effects and determined their abilities to inhibit cellular functions associated with the metastatic potential of gastric cancer cells. We found that SYT13 interfered with focal adhesion kinase (FAK)-mediated intracellular signals. Intraperitoneal administration of hSYT13-4378 and hSYT13-4733 in a mouse xenograft model of metastasis inhibited the formation of peritoneal nodules and significantly increased survival. Reversible, dose- and sequence-dependent liver damage was induced by ASO treatment without causing abnormal morphological and histological changes in the brain. Intra-abdominal administration of AmNA-modified anti-SYT13 ASOs represents a promising strategy for treating peritoneal metastasis of gastric cancer.
Collapse
|
7
|
Meirelles RJDA, Lizarte Neto FS, Cirino MLDA, Novais PC, Gula IS, Silva JPD, Tazzima MDFGS, Fazan VPS, Durand MT, Tirapelli DPDC, Carvalho CAMD, Schimming BC, Molina CAF, Tucci Junior S, Tirapelli LF. Morphological and molecular analysis of apoptosis in the corpus cavernosum of rats submitted to a chronic alcoholism model. Acta Cir Bras 2020; 35:e202000305. [PMID: 32520081 PMCID: PMC7282493 DOI: 10.1590/s0102-865020200030000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To evaluate the effect of chronic alcoholism on morphometry and apoptosis mechanism and correlate with miRNA-21 expression in the corpus cavernosum of rats. Methods Twenty-four rats were divided into two experimental groups: Control (C) and Alcoholic group (A). After two weeks of an adaptive phase, rats from group A received only ethanol solution (20%) during 7 weeks. The morphometric and caspase-3 immunohistochemistry analysis were performed in the corpus cavernosum. The miRNA-21 expression was analyzed in blood and cavernous tissue. Results Chronic ethanol consumption decreased cavernosal smooth muscle area of alcoholic rats. The protein expression of caspase 3 in the corpus cavernosum was higher in A compared to the C group. There was no difference in the expression of miRNA-21 in serum and cavernous tissue between the groups. Conclusion Chronic ethanol consumption reduced smooth muscle area and increased caspase 3 in the corpus cavernosum of rats, without altered serum and cavernosal miR-21 gene expression.
Collapse
|