1
|
Chaudhary RK, Patil P, Ananthesh L, Gowdru Srinivasa M, Mateti UV, Shetty V, Khanal P. Identification of signature genes and drug candidates for primary plasma cell leukemia: An integrated system biology approach. Comput Biol Med 2023; 162:107090. [PMID: 37295388 DOI: 10.1016/j.compbiomed.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plasma cell leukemia (PCL) is one of the rare cancer which is characterized by the uncontrolled proliferation of plasma cells in peripheral blood and bone marrow. The aggressive behavior of the disease and high mortality rate among PCL patients makes it a thirst area to be explored. METHODS The dataset for PCL was obtained from the GEO database and was analyzed using GEO2R for differentially expressed genes. Further, the functional enrichment analysis was carried out for DEGs using DAVID. The protein-protein interactions (PPI) for DEGs were obtained using STRING 11.5 and were analyzed in Cytoscape 3.7.2. to obtain the key hub genes. These key hub genes were investigated for their interaction with suitable drug candidates using DGIdb, DrugMAP, and Schrodinger's version 2022-1. RESULTS Out of the total of 104 DEGs, 39 genes were up-regulated whereas 65 genes were down-regulated. A total of 11 biological processes, 2 cellular components, and 5 molecular functions were enriched along with the 7 KEGG pathways for the DEGs. Further, a total of 11 hub genes were obtained from the PPI of DEGs of which TP53, MAPK1, SOCS1, MBD3, and YES1 were the key hub genes. Oxaliplatin, mitoxantrone, and ponatinib were found to have the highest binding affinity towards the p53, MAPK1, and YES1 proteins respectively. CONCLUSION TP53, MAPK1, SOCS1, MBD3, and YES1 are the signature hub genes that might be responsible for the aggressive prognosis of PCL leading to poor survival rate. However, p53, MAPK1, and YES1 can be targeted with oxaliplatin, mitoxantrone, and ponatinib.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| | - Prakash Patil
- Central Research Laboratory (CRL), K.S. Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Mangaluru, 575018, Karnataka, India
| | - L Ananthesh
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India
| | - Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| | - Vijith Shetty
- Department of Medical Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Mangalore, 575018, India
| | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Chen Y, Hou C, Yang N, Yang Y, Chen Y, Kong D, Jiang Y, Lin M, Zheng S, Li S, Lu M. Regulatory Effect of JAK2/STAT3 on the Immune Function of Endotoxin-tolerant Dendritic Cells and its Involvement in Acute Liver Failure. J Clin Transl Hepatol 2022; 10:879-890. [PMID: 36304491 PMCID: PMC9547265 DOI: 10.14218/jcth.2021.00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/19/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a potentially fatal clinical syndrome with no effective treatment. This study aimed to explore the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in modulating the phenotype and immune function of endotoxin-tolerant dendritic cells (ETDCs). In addition, we explored the use of EDTCs in an experimental model of ALF and investigated the associated mechanisms. METHODS In the in vitro experiment, ETDCs were transfected with adenovirus to induce SOCS1+/+ETDCs and SOCS1-/-ETDCs. Thereafter, costimulatory molecules and mixed lymphocyte reaction were assessed. Experimental mice were randomly divided into normal control, ALF, ALF+mock-ETDCs, ALF+SOCS1+/+ETDCs, ALF+AG490, and ALF+AG490+SOCS1+/+ETDCs groups. We examined the therapeutic effect of adoptive cellular immunotherapy by tail-vein injection of target ETDCs 12 h before ALF modeling. AG490, a JAK2/STAT3 inhibitor, was used in the in vivo experiment to further explore the protective mechanism of SOCS1+/+ETDCs. RESULTS Compared with control ETDCs, SOCS1+/+ETDCs had lower expression of costimulatory molecules, weaker allostimulatory ability, lower levels of IL-6 and TNF-α expression and higher IL-10 secretion. SOCS1-/-ETDCs showed the opposite results. In the in vivo experiments, the ALF+SOCS1+/+ETDCs and ALF+AG490+SOCS1+/+ETDCs groups showed less pathological damage and suppressed activation of JAK2/STAT3 pathway. The changes were more pronounced in the ALF+AG490+SOCS1+/+ETDCs group. Infusion of SOCS1+/+ETDCs had a protective effect against ALF possibly via inhibition of JAK2 and STAT3 phosphorylation. CONCLUSIONS The SOCS1 gene had an important role in induction of endotoxin tolerance. SOCS1+/+ETDCs alleviated lipopolysaccharide/D-galactosamine-induced ALF by downregulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yukai Chen
- Ningbo Puji Hospital, Ningbo, Zhejiang, China
| | - Chaochen Hou
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Naibin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yanyan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youran Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyong Kong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchun Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minghao Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence to: Mingqin Lu and Shanshan Li, Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. ORCID: https://orcid.org/0000-0002-8331-5862 (ML) and https://orcid.org/0000-0002-5017-7766 (SL). Tel: +86-577-55579631 (ML) and +86-13736772148 (SL), Fax: +86-577-55578033, E-mail: (ML) and (SL)
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence to: Mingqin Lu and Shanshan Li, Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. ORCID: https://orcid.org/0000-0002-8331-5862 (ML) and https://orcid.org/0000-0002-5017-7766 (SL). Tel: +86-577-55579631 (ML) and +86-13736772148 (SL), Fax: +86-577-55578033, E-mail: (ML) and (SL)
| |
Collapse
|
3
|
Ran S, Ren Q, Li S. JAK2/STAT3 in role of arsenic-induced cell proliferation: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:451-461. [PMID: 34332517 DOI: 10.1515/reveh-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Malignant cell proliferation is one of the important mechanisms of arsenic poisoning. A large number of studies have shown that STAT3 plays an important role in cell malignant proliferation, but there are still many contradictions in the effect of arsenic on JAK2/STAT3. This study aims to explore the role of JAK2/STAT3 in arsenic-induced cell proliferation. METHODS By taking normal cells as the research object and using Standard Mean Difference (SMD) as the effect size, meta-analysis was used to explore the effect of arsenic on JAK2/STAT3. Then, the dose-effect Meta was used to further clarify the dose-effect relationship of arsenic on JAK2/STAT3. RESULTS Through meta-analysis, this study found that arsenic could promote the phosphorylation of STAT3 (SMD=4.21, 95%CI [1.05, 7.37]), and increase IL-6 and p-JAK2, Vimentin, VEGF expression levels, thereby inducing malignant cell proliferation. In addition, this study also found that arsenic exposure dose (<5 μmol m-3), time(<24 h) and cell type were important sources of heterogeneity in the process of exploring the effects of arsenic on p-STAT3, IL-6 and p-JAK2. Dose-effect relationship meta-analysis results showed that arsenic exposure significantly increased the expression level of IL-6. When the arsenic exposure concentration was less than 7 μmol m-3, the expression level of p-JAK2 upregulated significantly as the arsenic exposure concentration gradually increasing. Moreover, the expression level of p-STAT3 elevated significantly with the gradual increase of the arsenic concentration under 5 μmol m-3 of arsenic exposure, but the expression level of p-STAT3 gradually decreases when the concentration is greater than 5 μmol m-3. CONCLUSIONS Exposure to low dose of arsenic could promote the expression of JAK2/STAT3 and induce the malignant proliferation of cells through upregulating IL-6, and there was dose-effect relationship among them.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Interleukin-17 activates JAK2/STAT3, PI3K/Akt and nuclear factor-κB signaling pathway to promote the tumorigenesis of cervical cancer. Exp Ther Med 2021; 22:1291. [PMID: 34630646 PMCID: PMC8461522 DOI: 10.3892/etm.2021.10726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17 has been regarded as a significant factor in inflammation. In addition, IL-17 is known to be involved in the progression of cancers; however, the function of IL-17 in cervical cancer remains unclear. In the present study, cell viability was detected by Cell Counting Kit-8 assay. Quantitative PCR and western blotting were performed to detect gene and protein expression levels, respectively, in cancer cells or tissues. Ki-67 staining was used to evaluate cell proliferation. Wound-healing assay was used to detect cell migration. Moreover, Transwell assay was performed to investigate the invasion of cervical cancer cells. The results revealed that IL-17 significantly promoted the proliferation of cervical cancer cells. Additionally, IL-17 notably enhanced the migration and invasion of cervical cancer cells in vitro. IL-17 promoted the progression of cervical cancer via the activation of JAK2/STAT3 and PI3K/Akt/NF-κB signaling. In conclusion, IL-17 was a key regulator during the progression of cervical cancer through the JAK2/STAT3 and PI3K/Akt/nuclear factor-κB signaling pathway, which may serve as a novel target for the treatment of cervical cancer.
Collapse
|