1
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2025; 27:1-14. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Shen L, Li S, Wang Y, Yin Y, Liu Y, Zhang Y, Zheng X. Alternating electric fields transform the intricate network of tumour vasculature into orderly parallel capillaries and enhance the anti-angiogenesis effect of bevacizumab. Cell Prolif 2025; 58:e13734. [PMID: 39161078 PMCID: PMC11693564 DOI: 10.1111/cpr.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
The search for effective strategies to target tumour angiogenesis remains a critical goal of cancer research. We present a pioneering approach using alternating electric fields to inhibit tumour angiogenesis and enhance the therapeutic efficacy of bevacizumab. Chicken chorioallantoic membrane, cell viability and in vitro endothelial tube formation assays revealed that electric fields with a frequency of 1000 kHz and an electric intensity of 0.6 V/cm inhibited the growth of vascular endothelial cells and suppressed tumour-induced angiogenesis. In an animal U87MG glioma model, 1000 kHz electric fields inhibited tumour angiogenesis and suppressed tumour growth. As demonstrated by 3D vessel analysis, tumour vasculature in the control group was a stout, interwoven network. However, electric fields transformed it into slim, parallel capillaries that were strictly perpendicular to the electric field direction. This architectural transformation was accompanied by apoptosis of vascular endothelial cells and a notable reduction in tumour vessel number. Additionally, we found that the anti-angiogenesis and tumour-suppression effects of electric fields synergised with bevacizumab. The anti-angiogenic mechanisms of electric fields include disrupting spindle formation during endothelial cell division and downregulating environmental angiogenesis-related cytokines, such as interleukin-6, CXCL-1, 2, 3, 5 and 8, and matrix metalloproteinases. In summary, our findings demonstrate the potential of alternating electric fields (AEFs) as a therapeutic modality to impede angiogenesis and restrain cancer growth.
Collapse
Affiliation(s)
- Lin Shen
- Department of Neurosurgery, XinHua HospitalShanghaiChina
| | - Shuai Li
- Department of NeurosurgeryThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Yalin Wang
- School of electronic information and electrical engineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yi Yin
- School of electronic information and electrical engineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiting Liu
- Department of Respiratory and Critical Care MedicineThe Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Yunlei Zhang
- Department of Respiratory and Critical Care MedicineThe Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingChina
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua HospitalShanghaiChina
- Department of NeurosurgeryThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Strack M, Kückelhaus J, Diebold M, Wuchter P, Huber PE, Schnell O, Sankowski R, Prinz M, Grosu AL, Heiland DH, Nicolay NH, Rühle A. Effects of tumor treating fields (TTFields) on human mesenchymal stromal cells. J Neurooncol 2024; 169:329-340. [PMID: 38900237 PMCID: PMC11341748 DOI: 10.1007/s11060-024-04740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.
Collapse
Affiliation(s)
- Maren Strack
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jan Kückelhaus
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neurology and Medical Oncology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden- Württemberg- Hessen, Heidelberg University, Mannheim, Germany
| | - Peter E Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Center Heidelberg, Heidelberg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany.
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Wu H, Zhou F, Gao W, Chen P, Wei Y, Wang F, Zhao H. Current status and research progress of minimally invasive treatment of glioma. Front Oncol 2024; 14:1383958. [PMID: 38835394 PMCID: PMC11148461 DOI: 10.3389/fonc.2024.1383958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Glioma has a high malignant degree and poor prognosis, which seriously affects the prognosis of patients. Traditional treatment methods mainly include craniotomy tumor resection, postoperative radiotherapy and chemotherapy. Although above methods have achieved remarkable curative effect, they still have certain limitations and adverse reactions. With the introduction of the concept of minimally invasive surgery and its clinical application as well as the development and progress of imaging technology, minimally invasive treatment of glioma has become a research hotspot in the field of neuromedicine, including photothermal treatment, photodynamic therapy, laser-induced thermal theraphy and TT-Fields of tumor. These therapeutic methods possess the advantages of precision, minimally invasive, quick recovery and significant curative effect, and have been widely used in clinical practice. The purpose of this review is to introduce the progress of minimally invasive treatment of glioma in recent years and the achievements and prospects for the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yu Lin, Yulin, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
5
|
Yu A, Zeng J, Yu J, Cao S, Li A. Theory and application of TTFields in newly diagnosed glioblastoma. CNS Neurosci Ther 2024; 30:e14563. [PMID: 38481068 PMCID: PMC10938032 DOI: 10.1111/cns.14563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Juan Zeng
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jinhui Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Shuo Cao
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ailin Li
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
| |
Collapse
|
6
|
Lee WS, Jang Y, Cho A, Kim YB, Bu YH, Yang S, Kim EH. Effectiveness of tumor‑treating fields to reduce the proliferation and migration of liposarcoma cell lines. Exp Ther Med 2023; 26:363. [PMID: 37408858 PMCID: PMC10318604 DOI: 10.3892/etm.2023.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 07/07/2023] Open
Abstract
Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yoonjung Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Gyeongsangbuk-do 42988, Republic of Korea
| | - Ahyeon Cho
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yu Bin Kim
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Young Hyun Bu
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Somi Yang
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| |
Collapse
|
7
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
8
|
Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields]). J Mol Cell Biol 2022; 14:mjac047. [PMID: 35973687 PMCID: PMC9912101 DOI: 10.1093/jmcb/mjac047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/11/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improved survival outcomes across many cancer types, the prognosis remains grim for certain solid organ cancers including glioblastoma and pancreatic cancer. Invariably in these cancers, the control achieved by time-limited interventions such as traditional surgical resection, radiation therapy, and chemotherapy is short-lived. A new form of anti-cancer therapy called therapeutic alternating electric fields (AEFs) or tumor treating fields (TTFields) has been shown, either by itself or in combination with chemotherapy, to have anti-cancer effects that translate to improved survival outcomes in patients. Although the pre-clinical and clinical data are promising, the mechanisms of TTFields are not fully elucidated. Many investigations are underway to better understand how and why TTFields is able to selectively kill cancer cells and impede their proliferation. The purpose of this review is to summarize and discuss the reported mechanisms of action of TTFields from pre-clinical studies (both in vitro and in vivo). An improved understanding of how TTFields works will guide strategies focused on the timing and combination of TTFields with other therapies, to further improve survival outcomes in patients with solid organ cancers.
Collapse
Affiliation(s)
- Shadi Shams
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08028, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Tanzhu G, Chen L, Xiao G, Shi W, Peng H, Chen D, Zhou R. The schemes, mechanisms and molecular pathway changes of Tumor Treating Fields (TTFields) alone or in combination with radiotherapy and chemotherapy. Cell Death Discov 2022; 8:416. [PMID: 36220835 PMCID: PMC9553876 DOI: 10.1038/s41420-022-01206-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor Treating Fields (TTFields) is a physical therapy that uses moderate frequency (100-300 kHz) and low-intensity (1-3 V/cm) alternating electric fields to inhibit tumors. Currently, the Food and Drug Administration approves TTFields for treating recurrent or newly diagnosed glioblastoma (GBM) and malignant pleural mesothelioma (MPM). The classical mechanism of TTFields is mitotic inhibition by hindering the formation of tubulin and spindle. In addition, TTFields inhibits cell proliferation, invasion, migration and induces cell death, such as apoptosis, autophagy, pyroptosis, and cell cycle arrest. Meanwhile, it regulates immune function and changes the permeability of the nuclear membrane, cell membrane, and blood-brain barrier. Based on the current researches on TTFields in various tumors, this review comprehensively summarizes the in-vitro effects, changes in pathways and molecules corresponding to relevant parameters of TTFields (frequency, intensity, and duration). In addition, radiotherapy and chemotherapy are common tumor treatments. Thus, we also pay attention to the sequence and dose when TTFields combined with radiotherapy or chemotherapy. TTFields has inhibitory effects in a variety of tumors. The study of TTFields mechanism is conducive to subsequent research. How to combine common tumor therapy such as radiotherapy and chemotherapy to obtain the maximum benefit is also a problem that's worthy of our attention.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, China.
| |
Collapse
|
10
|
Tumor-Treating Fields in Glioblastomas: Past, Present, and Future. Cancers (Basel) 2022; 14:cancers14153669. [PMID: 35954334 PMCID: PMC9367615 DOI: 10.3390/cancers14153669] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common malignant primary brain tumor. Although the standard of care, including maximal resection, concurrent radiotherapy with temozolomide (TMZ), and adjuvant TMZ, has largely improved the prognosis of these patients, the 5-year survival rate is still < 10%. Tumor-treating fields (TTFields), a noninvasive anticancer therapeutic modality, has been rising as a fourth treatment option for GBMs, as confirmed by recent milestone large-scale phase 3 randomized trials and subsequent real-world data, elongating patient overall survival from 16 months to 21 months. However, the mechanisms of antitumor efficacy, its clinical safety, and potential benefits when combined with other treatment modalities are far from completely elucidated. As an increasing number of studies have recently been published on this topic, we conducted this updated, comprehensive review to establish an objective understanding of the mechanism of action, efficacy, safety, clinical concerns, and future perspectives of TTFields. Abstract Tumor-treating fields (TTFields), a noninvasive and innovative therapeutic approach, has emerged as the fourth most effective treatment option for the management of glioblastomas (GBMs), the most deadly primary brain cancer. According to on recent milestone randomized trials and subsequent observational data, TTFields therapy leads to substantially prolonged patient survival and acceptable adverse events. Clinical trials are ongoing to further evaluate the safety and efficacy of TTFields in treating GBMs and its biological and radiological correlations. TTFields is administered by delivering low-intensity, intermediate-frequency, alternating electric fields to human GBM function through different mechanisms of action, including by disturbing cell mitosis, delaying DNA repair, enhancing autophagy, inhibiting cell metabolism and angiogenesis, and limiting cancer cell migration. The abilities of TTFields to strengthen intratumoral antitumor immunity, increase the permeability of the cell membrane and the blood–brain barrier, and disrupt DNA-damage-repair processes make it a promising therapy when combined with conventional treatment modalities. However, the overall acceptance of TTFields in real-world clinical practice is still low. Given that increasing studies on this promising topic have been published recently, we conducted this updated review on the past, present, and future of TTFields in GBMs.
Collapse
|
11
|
Hong P, Kudulaiti N, Wu S, Nie J, Zhuang D. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism. Expert Rev Mol Diagn 2021; 22:19-28. [PMID: 34883030 DOI: 10.1080/14737159.2022.2017283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION As a novel treatment modality, tumor treating fields (TTFields) exert low-intensity, medium-frequency electric fields on tumor cells. TTFields' effectiveness and safety have been demonstrated clinically and in the real world for treating glioblastoma, the most common and aggressive primary central nervous system tumor. TTFields therapy has also been approved for the management of malignant mesothelioma, and clinical trials are ongoing for NSCLC, gastric cancer, pancreatic cancer, and other solid tumors. AREAS COVERED This article comprehensively reviews the currently described evidence of TTFields' mechanism of action. TTFields' most evident therapeutic effect is to induce cell death by disrupting mitosis. Moreover, evidence suggests at additional mechanistic complexity, such as delayed DNA repair and heightened DNA replication stress, reversible increase in cell membrane and blood-brain barrier permeability, induction of immune response, and so on. EXPERT OPINION TTFields therapy has been arising as the fourth anti-tumor treatment besides surgery, radiotherapy, and antineoplastic agents in recent years. However, the precise molecular mechanisms underlying the effects of TTFields are not fully understood and some concepts remain controversial. An in-depth understanding of TTFields' effects on tumor cell and tumor microenvironment would be crucial for informing research aimed at further optimizing TTFields' efficacy and developing new combination therapies for clinical applications.
Collapse
Affiliation(s)
- Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jingtao Nie
- Zai Lab Trading (Shanghai) Co., Ltd., Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|