1
|
Bernal YA, Durán E, Solar I, Sagredo EA, Armisén R. ADAR-Mediated A>I(G) RNA Editing in the Genotoxic Drug Response of Breast Cancer. Int J Mol Sci 2024; 25:7424. [PMID: 39000531 PMCID: PMC11242177 DOI: 10.3390/ijms25137424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Collapse
Affiliation(s)
- Yanara A Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo Durán
- Subdepartamento de Genómica y Genética Molecular, Sección Genética Humana, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa, Santiago 7780050, Chile
| | - Isidora Solar
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo A Sagredo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-171 77 Stockholm, Sweden
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
2
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
3
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
4
|
Baghban N, Khoradmehr A, Nabipour I, Tamadon A, Ullah M. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. GOLD BULLETIN 2022; 55:53-63. [DOI: 10.1007/s13404-021-00304-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2025]
|
5
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
6
|
Ullah A, Mabood N, Maqbool M, Khan L, Ullah M. Cytidine deamination-induced perpetual immunity to SAR-CoV-2 infection is a potential new therapeutic target. Int J Med Sci 2021; 18:3788-3793. [PMID: 34790054 PMCID: PMC8579299 DOI: 10.7150/ijms.61779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
As the world is racing to develop perpetual immunity to the SARS-CoV-2 virus. The emergence of new viral strains, together with vaccination and reinfections, are all contributing to a long-term immunity against the deadly virus that has taken over the world since its introduction to humans in late December 2019. The discovery that more than 95 percent of people who recovered from COVID-19 had long-lasting immunity and that asymptomatic people have a different immune response to SARS-CoV-2 than symptomatic people has shifted attention to how our immune system initiates such diverse responses. These findings have provided reason to believe that SARS-CoV-2 days are numbered. Hundreds of research papers have been published on the causes of long-lasting immune responses and variations in the numbers of different immune cell types in COVID 19 survivors, but the main reason of these differences has still not been adequately identified. In this article, we focus on the activation-induced cytidine deaminase (AID), which initiates molecular processes that allow our immune system to generate antibodies against SARS-CoV-2. To establish lasting immunity to SARS-CoV-2, we suggest that AID could be the key to unlocking it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Ullah A, Mabood N, Maqbool M, Khan L, Khan M, Ullah M. SAR-CoV-2 infection, emerging new variants and the role of activation induced cytidine deaminase (AID) in lasting immunity. Saudi Pharm J 2021; 29:1181-1184. [PMID: 34566457 PMCID: PMC8452370 DOI: 10.1016/j.jsps.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
As the world faces a fourth COVID-19 spike, scientists are learning a lot more about the new SARS-CoV-2 strains that were previously unknown. Currently, the Delta versions of SARS-CoV-2 have become the prevalent strains in much of the world since it first appeared in India in late 2020. Researchers believe they have discovered why Delta has been so successful: those infected with it create significantly more virus than those infected with the original strain of SARS-CoV-2, making it extremely contagious. This has redirected the focus to how our immune system defends us from these various pathogens and initiates such varied responses. Hundreds of research papers have been published on the origins of long-lasting immune responses and disparities in the numbers of different immune cell types in COVID 19 survivors, but the primary architect of these discrepancies has yet to be discovered. In this essay, we will concentrate on the primary architect protein, activation induced cytidine deaminase (AID), which triggers molecular processes that allow our immune system to produce powerful antibodies and SARS-CoV-2 specific B cells, allowing us to outwit the virus. We believe that if we ever achieve permanent immunity to SARS-CoV-2 infection, AID will be the key to releasing it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Vascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Khan
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Akbar A, Pillalamarri N, Jonnakuti S, Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci 2021; 11:108. [PMID: 34108005 PMCID: PMC8191053 DOI: 10.1186/s13578-021-00623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Ullah M, Qian NPM, Yannarelli G. Advances in innovative exosome-technology for real time monitoring of viable drugs in clinical translation, prognosis and treatment response. Oncotarget 2021; 12:1029-1031. [PMID: 34084276 PMCID: PMC8169069 DOI: 10.18632/oncotarget.27927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/07/2023] Open
|
10
|
Pillalamarri N, Abdullah, Ren G, Khan L, Ullah A, Jonnakuti S, Ullah M. Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Transl Oncol 2021; 14:101095. [PMID: 33887552 PMCID: PMC8053440 DOI: 10.1016/j.tranon.2021.101095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential mediators of intercellular communication. EVs are nano-sized, lipid membrane-bound vesicles that contains biological information in the form of proteins, metabolites and/or nucleic acids. EVs are key regulators of tissue repair mechanisms, such as in the context of lung injuries. Recent studies suggest that EVs have the ability to repair COVID19-associated acute lung damage. EVs hold great promise for therapeutic treatments, particularly in treating a potentially fatal autoimmune response and attenuate inflammation. They are known to boost lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. EV-based immunization technology has been proven to elicit robust immune responses in many models of infectious disease, including COVID-19. The field of EV research has tremendous potential in advancing our understanding about viral infection pathogenesis, and can be translated into anti-viral therapeutic strategies.
Collapse
Affiliation(s)
- Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Abdullah
- Molecular Medicine Department of Medicine, Stanford University, CA, United States
| | - Gang Ren
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Luqman Khan
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Asad Ullah
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States; Molecular Medicine Department of Medicine, Stanford University, CA, United States.
| |
Collapse
|
11
|
Ullah M, Kodam SP, Mu Q, Akbar A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS NANO 2021; 15:3612-3620. [PMID: 33666429 DOI: 10.1021/acsnano.0c10689] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) and microbubbles are nanoparticles in drug-delivery systems that are both considered important for clinical translation. Current research has found that both microbubbles and EVs have the potential to be utilized as drug-delivery agents for therapeutic targets in various diseases. In combination with EVs, microbubbles are capable of delivering chemotherapeutic drugs to tumor sites and neighboring sites of damaged tissues. However, there are no standards to evaluate or to compare the benefits of EVs (natural carrier) versus microbubbles (synthetic carrier) as drug carriers. Both drug carriers are being investigated for release patterns and for pharmacokinetics; however, few researchers have focused on their targeted delivery or efficacy. In this Perspective, we compare EVs and microbubbles for a better understanding of their utility in terms of delivering drugs to their site of action and future clinical translation.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Sai Priyanka Kodam
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qian Mu
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|