1
|
Li T, Zhang G, Li W, Xiao J, Zhou Z, Tan G, Ai J. MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2. Biol Chem 2023; 404:961-975. [PMID: 36752150 DOI: 10.1515/hsz-2022-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
This study aims to explore the mechanism of microRNA (miR)-101-3p-mediated SOX2/ZIC5 axis in the progression of cisplatin resistance of nasopharyngeal carcinoma (NPC). ZIC5 expression was analyzed with a bioinformatics database and detected in NPC cell lines. Cisplatin-resistant cells (HNE-1/DDP and C666-1/DDP) were transfected with sh-ZIC5, sh-SOX2, sh-SOX2 + pcDNA3.1-ZIC5, or miR-101-3p Agomir + pcDNA3.1-SOX2. MiR-101-3p, SOX2, and ZIC5 expression was assessed after transfection, and cancer associated phenotypes were evaluated after cisplatin treatment. The potential relationships among miR-101-3p, SOX2, and ZIC5 were analyzed. A xenograft mouse model of NPC was established with HNE-1 cells stably transfected or not transfected with oe-ZIC5 and subjected to tail vein injection of miR-101-3p Agomir and intraperitoneal injection of cisplatin. Overexpression of ZIC5 was found in cisplatin-resistant NPC cells. Downregulating ZIC5 in NPC cells decreased cell viability, promoted apoptosis, and reduced cisplatin resistance. SOX2 had a binding site on ZIC5, and SOX2 promoted proliferation, migration, and cisplatin resistance and inhibited cell apoptosis by up-regulating ZIC5. Mechanistically, miR-101-3p was decreased in cisplatin-resistant NPC cells and negatively targeted SOX2. Overexpression of miR-101-3p inhibited tumor growth and cisplatin resistance in xenograft mouse model, which was reversed by ZIC5 overexpression. In conclusion, the miR-101-3p/SOX2/ZIC5 axis was implicated in cancer associated phenotypes and cisplatin resistance in NPC.
Collapse
Affiliation(s)
- Tieqi Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Gehou Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jian Xiao
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Zheng Zhou
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jingang Ai
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| |
Collapse
|
2
|
Huang J, Yang J, Zhang Y, Lu D, Dai Y. FTO promotes cervical cancer cell proliferation, colony formation, migration and invasion via the regulation of the BMP4/Hippo/YAP1/TAZ pathway. Exp Cell Res 2023; 427:113585. [PMID: 37030332 DOI: 10.1016/j.yexcr.2023.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Cervical cancer is the fourth most common malignancy tumor worldwide with high incidence and mortality. Accumulating evidence indicated that through an m6A-dependent or m6A-independent mechanism, fat mass and obesity associated gene (FTO) exhibits the tumor-promoting and suppressive roles of FTO involved in various cancers, including cervical cancer. This study aims to verify the biological function and potential mechanisms of FTO in cervical cancer cell proliferation, colony formation, migration, and invasion in vitro as well as tumor growth in vivo. Herein, we confirmed that knockdown of FTO inhibits cell proliferation, colony formation, migration, and invasion of cervical cancer cells in vitro via cell counting kit-8 (CCK8) assay, colony formation assay, and transwell migration and invasion assay. The demethylase activity of FTO is required for cell proliferation, colony formation, migration, and invasion of cervical cancer cells in vitro. RNA sequencing, online database analysis, and western blotting revealed that FTO regulated the BMP4/Hippo/YAP1/TAZ pathway. In addition, FTO upregulates the expression of BMP4 in an m6A-dependent manner and binds to the N-terminal of BMP4 to form a dimer at the C-terminal in cervical cancer cells through protein-protein interaction. We further discovered that BMP4 treatment promoted cell proliferation, colony formation, migration, and invasion of cervical cancer cells, and rescue experiments validated that BMP4 treatment reversed the inhibition of FTO knockdown on the Hippo/YAP1/TAZ pathway and the progression of cervical cancer cells in vitro. Notably, the knockdown of FTO significantly suppressed xenograft tumor growth and the protein level of BMP4 in vivo. Collectively, our results demonstrate that the FTO promotes cervical cancer progression in vitro and in vivo via the regulation of the BMP4/Hippo/YAP1/TAZ pathway, suggesting that FTO acts as an oncogenic molecule and the FTO/BMP4 Hippo/YAP1/TAZ axis may serve as valuable targets for cervical cancer treatment.
Collapse
Affiliation(s)
- Jinyuan Huang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jing Yang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yudi Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
3
|
Zheng M, Xu L, Wei C, Guan W. CircRTN1 stimulates HMGB1 to regulate the malignant progression of papillary thyroid cancer by sponging miR-101-3p. Hormones (Athens) 2023; 22:281-293. [PMID: 36826778 DOI: 10.1007/s42000-023-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND The important role played by circular RNA (circRNA) in promoting the progression of papillary thyroid cancer (PTC) is attracting ever more attention among medical researchers. However, what the precise contribution is of circRTN1 in PTC progression remains unclear. The study was designed to analyze the role and mechanism of circRTN1 in regulating PTC progression. METHODS Human PTC cell lines (TPC-1 and IHH-4) and human thyroid normal cells (Nthy-ori 3-1) were used for in vitro assays. mRNA or protein expression of circRTN1, miR-101-3p, and high mobility group box 1 (HMGB1) were detected by quantitative real-time polymerase chain reaction or western blot. Cell proliferation was investigated by cell counting kit-8 assay, cell colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Wound-healing assay and transwell invasion assay were conducted to evaluate cell migration and invasion. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to verify the target relations between circRTN1, miR-101-3p, and HMGB1. A xenograft tumor model was established to demonstrate the effect of circRTN1 on tumor formation in vivo. An immunohistochemistry assay was used to detect protein expression of HMGB1, ki-67, E-cadherin, and vimentin. RESULTS In comparison with healthy thyroid tissues and cells, PTC tissues and cells displayed high circRTN1 RNA expression and high HMGB1 mRNA and protein expression but low miR-101-3p expression. Silencing of circRTN1 suppressed PTC cell proliferation, migration, and invasion in vitro. MiR-101-3p was a target of circRTN1, and the knockdown of miR-101-3p relieved circRTN1 absence-mediated suppressive effects on PTC cell malignancy. HMGB1 was identified as a target gene of miR-101-3p, and overexpressed HMGB1 almost reverted the inhibitory impacts induced by miR-101-3p mimic in PTC cells. Moreover, circRTN1 silencing hampered tumor formation in vivo. CONCLUSION CircRTN1 depletion impeded PTC cell malignancy via the miR-101-3p/HMGB1 pathway, which provided a possible circRNA-targeted therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Lingli Xu
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Cuifeng Wei
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Wenzhen Guan
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China.
| |
Collapse
|
4
|
Liu N, Yang C, Gao A, Sun M, Lv D. MiR-101: An Important Regulator of Gene Expression and Tumor Ecosystem. Cancers (Basel) 2022; 14:cancers14235861. [PMID: 36497343 PMCID: PMC9739992 DOI: 10.3390/cancers14235861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
MiRNAs are small single-stranded non-coding RNAs. MiRNA contributes to the transcriptional and post-transcriptional regulation of mRNA in different cell types, including mRNA transcription inhibition and mRNA decay and phenotypes via the effect of several essential oncogenic processes and tumor microenvironment. MiR-101 is a highly conserved miRNA that was found to alter the expression in various human cancers. MiR-101 has been reported to have tumor oncogenic and suppressive effects to regulate tumorigenesis and tumor progression. In this review, we summarize the new findings about the roles of miR-101 in cancers and the underlying mechanisms of targeting genes degradation and microenvironment regulation, which will improve biological understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Ang Gao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
- Correspondence: (M.S.); (D.L.)
| | - Deguan Lv
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Correspondence: (M.S.); (D.L.)
| |
Collapse
|
5
|
Lu J, Yu C, Bao Q, Zhang X, Wang J. Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma. Front Immunol 2022; 13:973649. [PMID: 36081504 PMCID: PMC9445885 DOI: 10.3389/fimmu.2022.973649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma remains the third most common cause of cancer-related deaths worldwide. Although great achievements have been made in resection, chemical therapies and immunotherapies, the pathogenesis and mechanism of HCC initiation and progression still need further exploration. Necroptosis genes have been reported to play an important role in HCC malignant activities, thus it is of great importance to comprehensively explore necroptosis-associated genes in HCC. Methods We chose the LIHC cohort from the TCGA, ICGC and GEO databases for this study. ConsensusClusterPlus was adopted to identify the necroptosis genes-based clusters, and LASSO cox regression was applied to construct the prognostic model based on necroptosis signatures. The GSEA and CIBERSORT algorithms were applied to evaluate the immune cell infiltration level. QPCR was also applied in this study to evaluate the expression level of genes in HCC. Results We identified three clusters, C1, C2 and C3. Compared with C2 and C3, the C1 cluster had the shortest overall survival time and highest immune score. The C1 was samples were significantly enriched in cell cycle pathways, some tumor epithelial-mesenchymal transition related signaling pathways, among others. The DEGs between the 3 clusters showed that C1 was enriched in cell cycle, DNA replication, cellular senescence, and p53 signaling pathways. The LASSO cox regression identified KPNA2, SLC1A5 and RAMP3 as prognostic model hub genes. The high risk-score subgroup had an elevated expression level of immune checkpoint genes and a higher TIDE score, which suggested that the high risk-score subgroup had a lower efficiency of immunotherapies. We also validated that the necroptosis signatures-based risk-score model had powerful prognosis prediction ability. Conclusion Based on necroptosis-related genes, we classified patients into 3 clusters, among which C1 had significantly shorter overall survival times. The proposed necroptosis signatures-based prognosis prediction model provides a novel approach in HCC survival prediction and clinical evaluation.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Juan Lu,
| | - Chengbo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Lan X, Zhao L, Zhang J, Shao Y, Qv Y, Huang J, Cai L. Comprehensive analysis of karyopherin alpha family expression in lung adenocarcinoma: Association with prognostic value and immune homeostasis. Front Genet 2022; 13:956314. [PMID: 35991543 PMCID: PMC9382304 DOI: 10.3389/fgene.2022.956314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Karyopherin alpha (KPNA), a nuclear transporter, has been implicated in the development as well as the progression of many types of malignancies. Immune homeostasis is a multilevel system which regulated by multiple factors. However, the functional significance of the KPNA family in the pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune homeostasis are not well characterized. Methods: In this study, by integrating the TCGA-LUAD database and Masked Somatic Mutation, we first conducted an investigation on the expression levels and mutation status of the KPNA family in patients with LUAD. Then, we constructed a prognostic model based on clinical features and the expression of the KPNA family. We performed functional enrichment analysis and constructed a regulatory network utilizing the differential genes in high-and low-risk groups. Lastly, we performed immune infiltration analysis using CIBERSORT. Results: Analysis of TCGA datasets revealed differential expression of the KPNA family in LUAD. Kaplan-Meier survival analyses indicated that the high expression of KPNA2 and KPNA4 were predictive of inferior overall survival (OS). In addition, we constructed a prognostic model incorporating clinical factors and the expression level of KPNA4 and KPNA5, which accurately predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the high-risk group showed a poor prognosis. Functional enrichment analysis exhibited remarkable enrichment of transcriptional dysregulation in the high-risk group. On the other hand, gene set enrichment analysis (GSEA) displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic in the high-risk group. Finally, analysis of immune infiltration revealed significant differences between the high-and low-risk groups. Further, the high-risk group was more prone to immune evasion while the inflammatory response was strongly associated with the low-risk group. Conclusions: the KPNA family-based prognostic model reflects many biological aspects of LUAD and provides potential targets for precision therapy in LUAD.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingchun Shao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunmeng Qv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | - Li Cai
- *Correspondence: Jian Huang, ; Li Cai,
| |
Collapse
|
7
|
Liao LM, Gu ZB, Fang M, Yao GJ, Huang L. Overexpression of Karyopherin α2 in small cell carcinoma of the cervix correlates with poor prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:241-246. [PMID: 35795090 PMCID: PMC9253809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cervical small cell carcinoma (SCCC) is uncommon and little is known about its molecular markers. Karyopherin α2 (KPNA2) has been demonstrated in a variety of malignancies. Our objective was to determine whether the KPNA2 level is predictive of clinical outcome in patients with SCCC. METHODS We detected KPNA2 expression by immunohistochemistry in SCCC tumors from 62 patients. The staining results were evaluated by H-score. The correlation among KPNA2 expression level, clinical characteristics, and prognosis was analyzed. RESULTS KPNA2 expression was detected in tumor tissue from 55 patients with SCCC (55/62, 89%). High KPNA2 expression correlated significantly with International Federation of Gynecology and Obstetrics staging (P=0.035), tumor size (P=0.019), poorer overall survival (OS) (P=0.008), and poorer disease-free survival (P=0.004) compared to low KPNA2 expression. Multivariate analysis showed that KPNA2 expression level (P=0.037) and tumor size (P=0.046) were independent prognostic factors of OS. CONCLUSIONS KPNA2 may be a molecular marker and indicator of prognosis in SCCC.
Collapse
Affiliation(s)
- Ling-Min Liao
- The Second Afiliated Hospital of Nanchang UniversityNanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer ResearchJiangxi, China
| | - Zhen-Bang Gu
- The Second Afiliated Hospital of Nanchang UniversityNanchang, China
- Medical School of Nanchang UniversityNanchang, China
| | - Ming Fang
- The Second Afiliated Hospital of Nanchang UniversityNanchang, China
- Yangxin People’s Hospital of Hubei ProvinceChina
| | - Gong-Ji Yao
- The Second Afiliated Hospital of Nanchang UniversityNanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer ResearchJiangxi, China
| | - Long Huang
- The Second Afiliated Hospital of Nanchang UniversityNanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer ResearchJiangxi, China
| |
Collapse
|