1
|
Zhou R, Zhang K, Dai T, Guo Z, Li T, Hong X. Construction and validation of cell cycle-related prognostic genetic model for glioblastoma. Medicine (Baltimore) 2024; 103:e39205. [PMID: 39465756 PMCID: PMC11460857 DOI: 10.1097/md.0000000000039205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma (GBM) is a common primary malignant brain tumor and the prognosis of these patients remains poor. Therefore, further understanding of cell cycle-related molecular mechanisms of GBM and identification of appropriate prognostic markers and therapeutic targets are key research imperatives. Based on RNA-seq expression datasets from The Cancer Genome Atlas database, prognosis-related biological processes in GBM were screened out. Gene Set Variation Analysis (GSVA), LASSO-COX, univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis, and Pearson correlation analysis were performed for constructing a predictive prognostic model. A total of 58 cell cycle-related genes were identified by GSVA and analysis of differential expression between GBM and control samples. By univariate Cox and LASSO regression analyses, 8 genes were identified as prognostic biomarkers in GBM. A nomogram with superior performance to predict the survival of GBM patients was established regarding risk score, cancer status, recurrence type, and mRNAsi. This study revealed the prognostic value of cell cycle-related genes in GBM. In addition, we constructed a reliable model for predicting the prognosis of GBM patients. Our findings reinforce the relationship between cell cycle and GBM and may help improve the prognostic assessment of patients with GBM. Our predictive prognostic model, based on independent prognostic factors, enables tailored treatment strategies for GBM patients. It is particularly useful for subgroups with uncertain prognosis or treatment challenges.
Collapse
Affiliation(s)
- Runpeng Zhou
- Department of Neurosurgery, Pu’er People’s Hospital, Pu’er, China
| | - Kai Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tingting Dai
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Drozdz A, McInerney CE, Prise KM, Spence VJ, Sousa J. Signature Genes Selection and Functional Analysis of Astrocytoma Phenotypes: A Comparative Study. Cancers (Basel) 2024; 16:3263. [PMID: 39409884 PMCID: PMC11476064 DOI: 10.3390/cancers16193263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Novel cancer biomarkers discoveries are driven by the application of omics technologies. The vast quantity of highly dimensional data necessitates the implementation of feature selection. The mathematical basis of different selection methods varies considerably, which may influence subsequent inferences. In the study, feature selection and classification methods were employed to identify six signature gene sets of grade 2 and 3 astrocytoma samples from the Rembrandt repository. Subsequently, the impact of these variables on classification and further discovery of biological patterns was analysed. Principal component analysis (PCA), uniform manifold approximation and projection (UMAP), and hierarchical clustering revealed that the data set (10,096 genes) exhibited a high degree of noise, feature redundancy, and lack of distinct patterns. The application of feature selection methods resulted in a reduction in the number of genes to between 28 and 128. Notably, no single gene was selected by all of the methods tested. Selection led to an increase in classification accuracy and noise reduction. Significant differences in the Gene Ontology terms were discovered, with only 13 terms overlapping. One selection method did not result in any enriched terms. KEGG pathway analysis revealed only one pathway in common (cell cycle), while the two methods did not yield any enriched pathways. The results demonstrated a significant difference in outcomes when classification-type algorithms were utilised in comparison to mixed types (selection and classification). This may result in the inadvertent omission of biological phenomena, while simultaneously achieving enhanced classification outcomes.
Collapse
Affiliation(s)
- Anna Drozdz
- Sano—Centre for Computational Personalised Medicine-International Research Foundation, Czarnowiejska 36, 30-054 Kraków, Poland;
| | - Caitriona E. McInerney
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, BT9 7AE Belfast, Ireland; (C.E.M.); (K.M.P.)
| | - Kevin M. Prise
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, BT9 7AE Belfast, Ireland; (C.E.M.); (K.M.P.)
| | - Veronica J. Spence
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, BT9 7AE Belfast, Ireland; (C.E.M.); (K.M.P.)
| | - Jose Sousa
- Sano—Centre for Computational Personalised Medicine-International Research Foundation, Czarnowiejska 36, 30-054 Kraków, Poland;
| |
Collapse
|
3
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Farsi Z, Allahyari Fard N. The identification of key genes and pathways in glioblastoma by bioinformatics analysis. Mol Cell Oncol 2023; 10:2246657. [PMID: 37593751 PMCID: PMC10431734 DOI: 10.1080/23723556.2023.2246657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
GBM is the most common and aggressive type of brain tumor. It is classified as a grade IV tumor by the WHO, the highest grade. Prognosis is generally poor, with most patients surviving only about a year. Only 5% of patients survive longer than 5 years. Understanding the molecular mechanisms that drive GBM progression is critical for developing better diagnostic and treatment strategies. Identifying key genes involved in GBM pathogenesis is essential to fully understand the disease and develop targeted therapies. In this study two datasets, GSE108474 and GSE50161, were obtained from the Gene Expression Omnibus (GEO) to compare gene expression between GBM and normal samples. Differentially expressed genes (DEGs) were identified and analyzed. To construct a protein-protein interaction (PPI) network of the commonly up-regulated and down-regulated genes, the STRING 11.5 and Cytoscape 3.9.1 were utilized. Key genes were identified through this network analysis. The GEPIA database was used to confirm the expression levels of these key genes and their association with survival. Functional and pathway enrichment analyses on the DEGs were conducted using the Enrichr server. In total, 698 DEGs were identified, consisting of 377 up-regulated genes and 318 down-regulated genes. Within the PPI network, 11 key up-regulated genes and 13 key down-regulated genes associated with GBM were identified. NOTCH1, TOP2A, CD44, PTPRC, CDK4, HNRNPU, and PDGFRA were found to be important targets for potential drug design against GBM. Additionally, functional enrichment analysis revealed the significant impact of Epstein-Barr virus (EBV), Cell Cycle, and P53 signaling pathways on GBM.
Collapse
Affiliation(s)
- Zahra Farsi
- Department of Biology, Noor-Dnaesh Institute of Higher Education, Esfahan, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
6
|
Wen Y, Huang H, Huang B, Liao X. HSA-miR-34a-5p regulates the SIRT1/TP53 axis in prostate cancer. Am J Transl Res 2022; 14:4493-4504. [PMID: 35958506 PMCID: PMC9360830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
SIRT1 is tightly associated with the progression of prostate cancer while the role of Hsa-miR-34a-5p in SIRT1-mediated prostate cancer is not fully understood. We have thoroughly mined the data from two databases, namely the Lipidemia and the cancer genome atlas (TCGA) and found that SIRT1 was highly expressed in human carcinoma tissues as compared to normal tissues, and patients with high SIRT1 expression level had a shorter survival time. The online tool "Gene-RADAR" was applied to investigate the interaction among SIRT1, the TP53 gene and miR-34a-5p. We found that SIRT1 was up-regulated in cancer tissues from patients diagnosed with prostate and castration-resistant prostate cancer when compared to healthy controls. Pearson analysis indicated a positive correlation between SIRT1 and miR-34a-5p, while data mining on the TargetScan database predicted the binding site between the two. An apoptosis assay of prostate cancer cells (PRAD) confirmed that the overexpression of miR-34a-5p inhibited paclitaxel-induced apoptosis and promoted cell proliferation. Cell cycle analysis verified that miR-34a-5p overexpression blocked PRAD cells in the G2/S phase of the cell cycle. Moreover, the Western blotting (WB) and quantitative PCR (qPCR) assays demonstrated that the overexpression of miR-34a-5p induced down-regulation of the SIRT-related proteins HIF2α and PGC1α, while on the contrary, it up-regulated the expression of two tumour suppressor genes, TP53 and VEGF. In conclusion, we have shown that miR-34a-5p is involved in the oncogenesis of PRAD cells via the SIRT1/TP53 axis.
Collapse
Affiliation(s)
- Yongqin Wen
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Huijie Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Bo Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Xiaomin Liao
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| |
Collapse
|
7
|
He X, Wang J, Zhou R, Yu S, Jiang J, Zhou Q. Kinesin family member 23 exerts a protumor function in breast cancer via stimulation of the Wnt/β-catenin pathway. Toxicol Appl Pharmacol 2021; 435:115834. [PMID: 34933054 DOI: 10.1016/j.taap.2021.115834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Kinesin family member 23 (KIF23) has been described as one of the main genes that are associated with malignant transformation in numerous cancers. However, the exact significance of KIF23 in breast cancer has not been well-addressed. The present study was dedicated to the comprehensive investigation of KIF23 in breast cancer. Initial expression analysis through The Cancer Genome Atlas (TCGA) demonstrated high KIF23 levels in breast cancer compared with normal controls. These in silico data showing high levels of KIF23 in breast cancer were verified by assessing clinical specimens using real-time quantitative PCR and immunoblot assays. Moreover, a high KIF23 level was correlated with adverse clinical outcomes in breast cancer patients. Cellular functional experiments showed that the down-regulation of KIF23 affected the malignant behaviors of breast cancer cells in vitro, whereas the forced expression of KIF23 stimulated them. Mechanistic studies revealed that KIF23 restraint down-regulated the levels of phosphorylated glycogen synthetase kinase-3β (GSK-3β), β-catenin, cyclin D1 and c-myc in breast cancer cells, showing an inhibitory effect on the Wnt/β-catenin pathway. The suppression of GSK-3β was able to reverse KIF23-silencing-induced inactivation of the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway abolished KIF23 overexpression-mediated protumor effects in breast cancer. A xenograft assay confirmed the in vivo antitumor function of KIF23 inhibition. In conclusion, these findings suggest that KIF23 may exert a protumor function in breast cancer by stimulating the Wnt/β-catenin pathway. This work suggests that KIF23 has potential values for targeted therapy and prognosis in breast cancer.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Ru Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|