1
|
Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol 2024; 34:310-322. [PMID: 38880540 DOI: 10.1016/j.semradonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Treating radioresistant and bulky tumors is challenging due to their inherent resistance to standard therapies and their large size. GRID and lattice spatially fractionated radiation therapy (simply referred to GRID RT and LRT) offer promising techniques to tackle these issues. Both approaches deliver radiation in a grid-like or lattice pattern, creating high-dose peaks surrounded by low-dose valleys. This pattern enables the destruction of significant portions of the tumor while sparing healthy tissue. GRID RT uses a 2-dimensional pattern of high-dose peaks (15-20 Gy), while LRT delivers a three-dimensional array of high-dose vertices (10-20 Gy) spaced 2-5 cm apart. These techniques are beneficial for treating a variety of cancers, including soft tissue sarcomas, osteosarcomas, renal cell carcinoma, melanoma, gastrointestinal stromal tumors (GISTs), pancreatic cancer, glioblastoma, and hepatocellular carcinoma. The specific grid and lattice patterns must be carefully tailored for each cancer type to maximize the peak-to-valley dose ratio while protecting critical organs and minimizing collateral damage. For gynecologic cancers, the treatment plan should align with the international consensus guidelines, incorporating concurrent chemotherapy for optimal outcomes. Despite the challenges of precise dosimetry and patient selection, GRID RT and LRT can be cost-effective using existing radiation equipment, including particle therapy systems, to deliver targeted high-dose radiation peaks. This phased approach of partial high-dose induction radiation therapy with standard fractionated radiation therapy maximizes immune modulation and tumor control while reducing toxicity. Comprehensive treatment plans using these advanced techniques offer a valuable framework for radiation oncologists, ensuring safe and effective delivery of therapy for radioresistant and bulky tumors. Further clinical trials data and standardized guidelines will refine these strategies, helping expand access to innovative cancer treatments.
Collapse
Affiliation(s)
- Mansoor M Ahmed
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY.
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, FL
| | - Majid Mohiuddin
- Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, IL
| | | | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| | | | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
2
|
Tucker WW, Mazur TR, Schmidt MC, Hilliard J, Badiyan S, Spraker MB, Kavanaugh JA. Script-based implementation of automatic grid placement for lattice stereotactic body radiation therapy. Phys Imaging Radiat Oncol 2024; 29:100549. [PMID: 38380154 PMCID: PMC10876586 DOI: 10.1016/j.phro.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Background and purpose Spatially fractionated radiation therapy (SFRT) has demonstrated promising clinical response in treating large tumors with heterogeneous dose distributions. Lattice stereotactic body radiation therapy (SBRT) is an SFRT technique that leverages inverse optimization to precisely localize regions of high and lose dose within disease. The aim of this study was to evaluate an automated heuristic approach to sphere placement in lattice SBRT treatment planning. Materials and methods A script-based algorithm for sphere placement in lattice SBRT based on rules described by protocol was implemented within a treatment planning system. The script was applied to 22 treated cases and sphere distributions were compared with manually placed spheres in terms of number of spheres, number of protocol violations, and time required to place spheres. All cases were re-planned using script-generated spheres and plan quality was compared with clinical plans. Results The mean number of spheres placed excluding those that violate rules was greater using the script (13.8) than that obtained by either dosimetrist (10.8 and 12.0, p < 0.001 and p = 0.003) or physicist (12.7, p = 0.061). The mean time required to generate spheres was significantly less using the script (2.5 min) compared to manual placement by dosimetrists (25.0 and 29.9 min) and physicist (19.3 min). Plan quality indices were similar in all cases with no significant differences, and OAR constraints remained met on all plans except two. Conclusion A script placed spheres for lattice SBRT according to institutional protocol rules. The script-produced placement was superior to that of manually-specified spheres, as characterized by sphere number and rule violations.
Collapse
Affiliation(s)
- Wesley W. Tucker
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Thomas R. Mazur
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Matthew C. Schmidt
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Jessica Hilliard
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | | | | |
Collapse
|
3
|
Grams MP, Deufel CL, Kavanaugh JA, Corbin KS, Ahmed SK, Haddock MG, Lester SC, Ma DJ, Petersen IA, Finley RR, Lang KG, Spreiter SS, Park SS, Owen D. Clinical aspects of spatially fractionated radiation therapy treatments. Phys Med 2023; 111:102616. [PMID: 37311338 DOI: 10.1016/j.ejmp.2023.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
PURPOSE To provide clinical guidance for centers wishing to implement photon spatially fractionated radiation therapy (SFRT) treatments using either a brass grid or volumetric modulated arc therapy (VMAT) lattice approach. METHODS We describe in detail processes which have been developed over the course of a 3-year period during which our institution treated over 240 SFRT cases. The importance of patient selection, along with aspects of simulation, treatment planning, quality assurance, and treatment delivery are discussed. Illustrative examples involving clinical cases are shown, and we discuss safety implications relevant to the heterogeneous dose distributions. RESULTS SFRT can be an effective modality for tumors which are otherwise challenging to manage with conventional radiation therapy techniques or for patients who have limited treatment options. However, SFRT has several aspects which differ drastically from conventional radiation therapy treatments. Therefore, the successful implementation of an SFRT treatment program requires the multidisciplinary expertise and collaboration of physicians, physicists, dosimetrists, and radiation therapists. CONCLUSIONS We have described methods for patient selection, simulation, treatment planning, quality assurance and delivery of clinical SFRT treatments which were built upon our experience treating a large patient population with both a brass grid and VMAT lattice approach. Preclinical research and patient trials aimed at understanding the mechanism of action are needed to elucidate which patients may benefit most from SFRT, and ultimately expand its use.
Collapse
Affiliation(s)
- Michael P Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Christopher L Deufel
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - James A Kavanaugh
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Kimberly S Corbin
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Michael G Haddock
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Ivy A Petersen
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Randi R Finley
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Karen G Lang
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sheri S Spreiter
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|