1
|
Yu Y, Li GF, Tan WX, Qu XY, Zhang T, Hou XY, Zhu YB, Ma ZY, Yang L, Gao Y, Yu M, Yue C, Zhou Z, Yang Y, Yan LF, Cui GB. Towards automatical tumor segmentation in radiomics: a comparative analysis of various methods and radiologists for both region extraction and downstream diagnosis. BMC Med Imaging 2025; 25:63. [PMID: 40000987 PMCID: PMC11863488 DOI: 10.1186/s12880-025-01596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE By discussing the difference, stability and classification ability of tumor contour extracted by artificial intelligence and doctors, can a more stable method of tumor contour extraction be obtained? METHODS We propose a novel framework for the automatic segmentation of lung tumor contours and the differential diagnosis of downstream tasks. This framework integrates four key modules: tumor segmentation, extraction of radiomic features, feature selection, and the development of diagnostic models for clinical applications. Using this framework, we conducted a study involving a cohort of 1,429 patients suspected of lung cancer. Four automatic segmentation methods (RNN, UNET, WFCM, and SNAKE) were evaluated against manual segmentation performed by three radiologists with varying levels of expertise. We further studied the consistency of radiomic features extracted from these methods and evaluates their diagnostic performance across three downstream tasks: benign vs. malignant classification, lung adenocarcinoma infiltration, and lung nodule density classification. RESULTS The Dice coefficient of RNN is the highest among the four automatic segmentation methods (0.803 > 0.751, 0.576, 0.560), and all P < 0.05. In the consistency comparison of the seven contour-extracted radiomic features, that the features extracted by RNN and S1 (the senior radiologist) showed the highest similarity which was higher than the other automatic segmentation methods and doctors with low seniority. In all three downstream tasks, the radiomic features extracted from RNN segmentation contours showed the highest diagnostic discrimination. In the classification of benign and malignant nodules, the RNN method performed slightly better than the S1 method, with an AUC of 0.840 ± 0.01 and 0.824 ± 0.015, respectively, and significantly better than the other five methods. Similarly, the RNN method had an AUC value of 0.946 in lung adenocarcinoma infiltration, and a kappa value of 0.729 in lung nodule density classification, both of which were better than the other six methods. CONCLUSIONS Our findings suggest that AI-driven tumor segmentation methods can enhance clinical decision-making by providing reliable and reproducible results, ultimately emphasizing the auxiliary role of automated tumor contouring in clinical practice. The findings will have important implications for the application of radiomics in clinical practice.
Collapse
Affiliation(s)
- Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Gang-Feng Li
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Wei-Xiong Tan
- Deepwise Artificial Intelligence (AI), Deepwise Inc, 8 Haidian Street, Beijing, 100080, China
| | - Xiao-Yan Qu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi, 710038, China
| | - Xing-Yi Hou
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Yuan-Bo Zhu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Zhi-Ying Ma
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Lu Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Ya Gao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Mei Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Cui Yue
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China
| | - Zhen Zhou
- Deepwise Artificial Intelligence (AI), Deepwise Inc, 8 Haidian Street, Beijing, 100080, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China.
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China.
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an , Shaanxi, 710038, China.
| |
Collapse
|
2
|
Guerrisi A, Miseo L, Falcone I, Messina C, Ungania S, Elia F, Desiderio F, Valenti F, Cantisani V, Soriani A, Caterino M. Quantitative ultrasound radiomics analysis to evaluate lymph nodes in patients with cancer: a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:586-596. [PMID: 38663433 DOI: 10.1055/a-2275-8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This systematic review aims to evaluate the role of ultrasound (US) radiomics in assessing lymphadenopathy in patients with cancer and the ability of radiomics to predict metastatic lymph node involvement. A systematic literature search was performed in the PubMed (MEDLINE), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE (Ovid) databases up to June 13, 2023. 42 articles were included in which the lymph node mass was assessed with a US exam, and the analysis was performed using radiomics methods. From the survey of the selected articles, experimental evidence suggests that radiomics features extracted from US images can be a useful tool for predicting and characterizing lymphadenopathy in patients with breast, head and neck, and cervical cancer. This noninvasive and effective method allows the extraction of important information beyond mere morphological characteristics, extracting features that may be related to lymph node involvement. Future studies are needed to investigate the role of US-radiomics in other types of cancers, such as melanoma.
Collapse
Affiliation(s)
- Antonio Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Ludovica Miseo
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Italia Falcone
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Claudia Messina
- Library, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Fulvia Elia
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Fabio Valenti
- UOC Oncological Translational Research, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Vito Cantisani
- Department of Radiology, "Sapienza" University of Rome, Roma, Italy
| | - Antonella Soriani
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Mauro Caterino
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| |
Collapse
|
3
|
Moro F, Ciancia M, Zace D, Vagni M, Tran HE, Giudice MT, Zoccoli SG, Mascilini F, Ciccarone F, Boldrini L, D'Antonio F, Scambia G, Testa AC. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. Int J Cancer 2024; 155:1832-1845. [PMID: 38989809 DOI: 10.1002/ijc.35092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS-AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open-source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression-free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.
Collapse
Affiliation(s)
- Francesca Moro
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Marianna Ciancia
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Salute della Donna e del Bambino, Università degli studi di Padova, Padova, Italy
| | - Drieda Zace
- Infectious Disease Clinic, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Marica Vagni
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Huong Elena Tran
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Maria Teresa Giudice
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Sofia Gambigliani Zoccoli
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Floriana Mascilini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Francesca Ciccarone
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | | | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonia Carla Testa
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Lyu GW, Tong T, Yang GD, Zhao J, Xu ZF, Zheng N, Zhang ZF. Bibliometric and visual analysis of radiomics for evaluating lymph node status in oncology. Front Med (Lausanne) 2024; 11:1501652. [PMID: 39610679 PMCID: PMC11602298 DOI: 10.3389/fmed.2024.1501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Background Radiomics, which involves the conversion of digital images into high-dimensional data, has been used in oncological studies since 2012. We analyzed the publications that had been conducted on this subject using bibliometric and visual methods to expound the hotpots and future trends regarding radiomics in evaluating lymph node status in oncology. Methods Documents published between 2012 and 2023, updated to August 1, 2024, were searched using the Scopus database. VOSviewer, R Package, and Microsoft Excel were used for visualization. Results A total of 898 original articles and reviews written in English and be related to radiomics for evaluating lymph node status in oncology, published between 2015 and 2023, were retrieved. A significant increase in the number of publications was observed, with an annual growth rate of 100.77%. The publications predominantly originated from three countries, with China leading in the number of publications and citations. Fudan University was the most contributing affiliation, followed by Sun Yat-sen University and Southern Medical University, all of which were from China. Tian J. from the Chinese Academy of Sciences contributed the most within 5885 authors. In addition, Frontiers in Oncology had the most publications and transcended other journals in recent 4 years. Moreover, the keywords co-occurrence suggested that the interplay of "radiomics" and "lymph node metastasis," as well as "major clinical study" were the predominant topics, furthermore, the focused topics shifted from revealing the diagnosis of cancers to exploring the deep learning-based prediction of lymph node metastasis, suggesting the combination of artificial intelligence research would develop in the future. Conclusion The present bibliometric and visual analysis described an approximately continuous trend of increasing publications related to radiomics in evaluating lymph node status in oncology and revealed that it could serve as an efficient tool for personalized diagnosis and treatment guidance in clinical patients, and combined artificial intelligence should be further considered in the future.
Collapse
Affiliation(s)
- Gui-Wen Lyu
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tong Tong
- Department of Ultrasound, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Dong Yang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jing Zhao
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zi-Fan Xu
- Department of Pathology, Shenzhen University Medical School, Shenzhen, China
| | - Na Zheng
- Department of Pathology, Shenzhen University Medical School, Shenzhen, China
| | - Zhi-Fang Zhang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Ervik Ø, Tveten I, Hofstad EF, Langø T, Leira HO, Amundsen T, Sorger H. Automatic Segmentation of Mediastinal Lymph Nodes and Blood Vessels in Endobronchial Ultrasound (EBUS) Images Using Deep Learning. J Imaging 2024; 10:190. [PMID: 39194979 DOI: 10.3390/jimaging10080190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Endobronchial ultrasound (EBUS) is used in the minimally invasive sampling of thoracic lymph nodes. In lung cancer staging, the accurate assessment of mediastinal structures is essential but challenged by variations in anatomy, image quality, and operator-dependent image interpretation. This study aimed to automatically detect and segment mediastinal lymph nodes and blood vessels employing a novel U-Net architecture-based approach in EBUS images. A total of 1161 EBUS images from 40 patients were annotated. For training and validation, 882 images from 30 patients and 145 images from 5 patients were utilized. A separate set of 134 images was reserved for testing. For lymph node and blood vessel segmentation, the mean ± standard deviation (SD) values of the Dice similarity coefficient were 0.71 ± 0.35 and 0.76 ± 0.38, those of the precision were 0.69 ± 0.36 and 0.82 ± 0.22, those of the sensitivity were 0.71 ± 0.38 and 0.80 ± 0.25, those of the specificity were 0.98 ± 0.02 and 0.99 ± 0.01, and those of the F1 score were 0.85 ± 0.16 and 0.81 ± 0.21, respectively. The average processing and segmentation run-time per image was 55 ± 1 ms (mean ± SD). The new U-Net architecture-based approach (EBUS-AI) could automatically detect and segment mediastinal lymph nodes and blood vessels in EBUS images. The method performed well and was feasible and fast, enabling real-time automatic labeling.
Collapse
Affiliation(s)
- Øyvind Ervik
- Clinic of Medicine, Nord-Trøndelag Hospital Trust, Levanger Hospital, 7601 Levanger, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Ingrid Tveten
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
| | | | - Thomas Langø
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
- Department of Research, St. Olavs Hospital, 7030 Trondheim, Norway
| | - Håkon Olav Leira
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Tore Amundsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Hanne Sorger
- Clinic of Medicine, Nord-Trøndelag Hospital Trust, Levanger Hospital, 7601 Levanger, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| |
Collapse
|
6
|
Luo X, Zheng R, Zhang J, He J, Luo W, Jiang Z, Li Q. CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1329801. [PMID: 38384802 PMCID: PMC10879429 DOI: 10.3389/fonc.2024.1329801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Radiomics, an emerging field, presents a promising avenue for the accurate prediction of biomarkers in different solid cancers. Lung cancer remains a significant global health challenge, contributing substantially to cancer-related mortality. Accurate assessment of Ki-67, a marker reflecting cellular proliferation, is crucial for evaluating tumor aggressiveness and treatment responsiveness, particularly in non-small cell lung cancer (NSCLC). Methods A systematic review and meta-analysis conducted following the preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidelines. Two authors independently conducted a literature search until September 23, 2023, in PubMed, Embase, and Web of Science. The focus was on identifying radiomics studies that predict Ki-67 expression in lung cancer. We evaluated quality using both Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. For statistical analysis in the meta-analysis, we used STATA 14.2 to assess sensitivity, specificity, heterogeneity, and diagnostic values. Results Ten retrospective studies were pooled in the meta-analysis. The findings demonstrated that the use of computed tomography (CT) scan-based radiomics for predicting Ki-67 expression in lung cancer exhibited encouraging diagnostic performance. Pooled sensitivity, specificity, and area under the curve (AUC) in training cohorts were 0.78, 0.81, and 0.85, respectively. In validation cohorts, these values were 0.78, 0.70, and 0.81. Quality assessment using QUADAS-2 and RQS indicated generally acceptable study quality. Heterogeneity in training cohorts, attributed to factors like contrast-enhanced CT scans and specific Ki-67 thresholds, was observed. Notably, publication bias was detected in the training cohort, indicating that positive results are more likely to be published than non-significant or negative results. Thus, journals are encouraged to publish negative results as well. Conclusion In summary, CT-based radiomics exhibit promise in predicting Ki-67 expression in lung cancer. While the results suggest potential clinical utility, additional research efforts should concentrate on enhancing diagnostic accuracy. This could pave the way for the integration of radiomics methods as a less invasive alternative to current procedures like biopsy and surgery in the assessment of Ki-67 expression.
Collapse
Affiliation(s)
- Xinmin Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Renying Zheng
- Department of Oncology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Jiao Zhang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Juan He
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Wei Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Zhi Jiang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Qiang Li
- Department of Radiology, Yuechi County Traditional Chinese Medicine Hospital in Sichuan Province, Guang’an, Sichuan, China
| |
Collapse
|
7
|
Zhao Z, Qin Y, Shao K, Liu Y, Zhang Y, Li H, Li W, Xu J, Zhang J, Ning B, Yu X, Jin X, Jin J. Radiomics Harmonization in Ultrasound Images for Cervical Cancer Lymph Node Metastasis Prediction Using Cycle-GAN. Technol Cancer Res Treat 2024; 23:15330338241302237. [PMID: 39639562 PMCID: PMC11788812 DOI: 10.1177/15330338241302237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Ultrasound (US) based radiomics is susceptible to variations in scanners, sonographers. Objective: To retrospectively investigate the feasibility of an adapted cycle generative adversarial networks (CycleGAN) in the style transfer to improve US based radiomics in the prediction of lymph node metastasis (LNM) with images from multiple scanners for patients with early cervical cancer (ECC). Methods: The CycleGAN was firstly trained to transfer paired US phantom images from one US device to another one; the model was then further trained and tested with clinical US images of ECC by transferring images from four US devices to one specific device; finally, the adapted model was tested with its effects on the radiomics feature harmonization and accuracy of LNM prediction in US based radiomics for ECC patients. Results: Phantom study demonstrated an increased radiomics harmonization using CycleGAN with an average Pearson correlation coefficient of 0.60 and 0.81 for radiomics features extracted from original and generated images in correlation with the target phantom images, respectively. Additionally, the image quality metric Peak Signal-to-Noise Ratio (PSNR) was increased from 11.18 for the original images to 15.45 for the generated image. Clinical US images of 169 ECC patients were enrolled for style transfer model training and validation. The area under curve (AUC) of LNM prediction radiomics models with features extracted from generated images of different style transfer models ranged from 0.73 to 0.85. The AUC was improved from 0.78 with features extracted from original images to 0.85 with style transferred images. Conclusions: The adapted CycleGAN network is able to increase the radiomics feature harmonization for images from different ultrasound equipment based on image domain and improve the LNM prediction accuracy for ECC.
Collapse
Affiliation(s)
- Zeshuo Zhao
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuning Qin
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kai Shao
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yapeng Liu
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Zhang
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Heng Li
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenlong Li
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayi Xu
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jicheng Zhang
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Boda Ning
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianwen Yu
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiance Jin
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Juebin Jin
- Department of Medical Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Tsuneki M, Zhang Y. Novel Applications of Artificial Intelligence in Cancer Research. Technol Cancer Res Treat 2023; 22:15330338231195025. [PMID: 37574841 PMCID: PMC10426296 DOI: 10.1177/15330338231195025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Cutting-edge developments in machine learning and deep learning are improving all aspects of cancer research and treatment. Nowadays, the applications of artificial intelligence, machine learning, and deep learning to clinical aspects of cancer research have received more attention from scholars, with particular emphasis on diagnosis, prognosis, detection, and treatment.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- Medical Research (Medmain Research), Medmain Inc, Fukuoka, Japan
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Impact of Tumour Segmentation Accuracy on Efficacy of Quantitative MRI Biomarkers of Radiotherapy Outcome in Brain Metastasis. Cancers (Basel) 2022; 14:cancers14205133. [PMID: 36291917 PMCID: PMC9601104 DOI: 10.3390/cancers14205133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Radiotherapy is a major treatment option for patients with brain metastasis. However, response to radiotherapy is highly varied among the patients, and it may take months before the response of brain metastasis to radiotherapy is apparent on standard follow-up imaging. This is not desirable, especially given the fact that patients diagnosed with brain metastasis suffer from a short median survival. Recent studies have shown the high potential of machine learning methods for analyzing quantitative imaging features (biomarkers) to predict the response of brain metastasis before or early after radiotherapy. However, these methods require manual delineation of individual tumours on imaging that is tedious and time-consuming, hindering further development and widespread application of these techniques. Here, we investigated the impact of using less accurate but automatically generated tumour outlines on the efficacy of the derived imaging biomarkers for radiotherapy response prediction. Our findings demonstrate that while the effect of tumour delineation accuracy is considerable for automatic contours with low accuracy, imaging biomarkers and prediction models are rather robust to imperfections in the produced tumour masks. The results of this study open the avenue to utilizing automatically generated tumour contours for discovering imaging biomarkers without sacrificing their accuracy. Abstract Significantly affecting patients’ clinical course and quality of life, a growing number of cancer cases are diagnosed with brain metastasis (BM) annually. Stereotactic radiotherapy is now a major treatment option for patients with BM. However, it may take months before the local response of BM to stereotactic radiation treatment is apparent on standard follow-up imaging. While machine learning in conjunction with radiomics has shown great promise in predicting the local response of BM before or early after radiotherapy, further development and widespread application of such techniques has been hindered by their dependency on manual tumour delineation. In this study, we explored the impact of using less-accurate automatically generated segmentation masks on the efficacy of radiomic features for radiotherapy outcome prediction in BM. The findings of this study demonstrate that while the effect of tumour delineation accuracy is substantial for segmentation models with lower dice scores (dice score ≤ 0.85), radiomic features and prediction models are rather resilient to imperfections in the produced tumour masks. Specifically, the selected radiomic features (six shared features out of seven) and performance of the prediction model (accuracy of 80% versus 80%, AUC of 0.81 versus 0.78) were fairly similar for the ground-truth and automatically generated segmentation masks, with dice scores close to 0.90. The positive outcome of this work paves the way for adopting high-throughput automatically generated tumour masks for discovering diagnostic and prognostic imaging biomarkers in BM without sacrificing accuracy.
Collapse
|